
version 2.4.2

Reference Manual

Michael Freed
Eric Dahlman
Michael Dalal
Robert Harris

NASA Ames Research Center



Printed in the United States of America.

Layout Design: Reagan Jew

Edition: October 29, 2003

NASA Ames Research Center
Moffett Field, CA 94035
(650) 604-5000

apexhelp@eos.arc.nasa.gov

http://human-factors.arc.nasa.gov/apex

© 2003 NASA Ames Research Center
All trademarks are the property of their respective owners.

mailto:apexhelp@eos.arc.nasa.gov
http://human-factors.arc.nasa.gov/apex


Apex Reference Manual (version 2.4.2)   -   Contents   i

Contents i

1.0 Introduction 1
1.1 What is Apex?...............................................................................................................................1
1.2 System Components..................................................................................................................2
1.3 Getting More Information............................................................................................................3
1.4 Conventions..................................................................................................................................4

2.0 Getting Started 5
2.1. Setting up.......................................................................................................................................5
2.2 Quick Tour......................................................................................................................................5

3.0 Using Apex 9
3.1 Interacting With Apex...................................................................................................................9
3.2 Introduction to Apex Applications.............................................................................................10
3.3 Loading an Application..............................................................................................................10
3.4 Running an Application.............................................................................................................11
3.5 Creating a New Application......................................................................................................12

3.5.1 Lisp Programming and Emacs.................................................................................12
3.5.2 Application Definition File............................................................................................12
3.5.3 Application Files............................................................................................................12
3.5.4 Libraries..........................................................................................................................13

3.5.4.1 Using Libraries.............................................................................................13
3.5.4.2 Creating Libraries........................................................................................13
3.5.4.3 Finding Libraries..........................................................................................14
3.5.4.4 Provided Libraries.......................................................................................14

3.5.5 Worldbuilder...................................................................................................................15
3.6 User Settings and Other Files..................................................................................................15
3.7 Apex Output................................................................................................................................15

3.7.1 Generating Event Traces............................................................................................15
3.7.2 Generating and Examining PERT Charts ..............................................................17
3.7.3 Exporting a PERT Chart to Microsoft PowerPoint.................................................17

3.8 System Patches.........................................................................................................................18
3.9 Getting Help.................................................................................................................................18

4.0 Procedure Description Language (PDL) 19
4.1 Action Selection Architecture (ASA).......................................................................................21
4.2 PDL Syntax..................................................................................................................................23

4.2.1 procedure ....................................................................................................................23
4.2.2 index..............................................................................................................................25
4.2.3 step................................................................................................................................26
4.2.4 waitfor.........................................................................................................................27
4.2.5 select ...........................................................................................................................29
4.2.6 period ...........................................................................................................................29
4.2.7 forall ...........................................................................................................................30

Contents



Apex Reference Manual (version 2.4.2)   -   Contents   ii

4.2.8 profile ...........................................................................................................................31
4.2.9 priority.......................................................................................................................32
4.2.10 interrupt-cost ........................................................................................................33
4.2.11 assume ...........................................................................................................................33
4.2.12 declare-fluent...........................................................................................................34
4.2.13 rank................................................................................................................................35

4.3 PDL Primitives.............................................................................................................................36
4.3.1 start-activity ........................................................................................................36
4.3.2 terminate ....................................................................................................................37
4.3.3 reset..............................................................................................................................38
4.3.4 cogevent.......................................................................................................................38
4.3.5 reprioritize.............................................................................................................39
4.3.6 hold-resource...........................................................................................................39
4.3.7 release-resource....................................................................................................39

4.4 PDL Variables .............................................................................................................................40
4.5 Miscellaneous Features............................................................................................................42

4.5.1 Agent’s Initial Task........................................................................................................42
4.5.2 PDL Partitions (Bundles).............................................................................................42

5.0 Apex Programming Guide 43
5.1 activity.....................................................................................................................................43
5.2 Application Interface...................................................................................................................45
5.3 asamain.......................................................................................................................................46
5.4 defapplication ......................................................................................................................46
5.5 Event Logging.............................................................................................................................47
5.6 Pausing Simulations..................................................................................................................48
5.7 simob............................................................................................................................................49
5.8 Specifying New Agent Resources..........................................................................................49

References 52

Glossary 53

Appendix A: Event Traces 54
A.1 Predefined Show-Levels..........................................................................................................54
A.2 Lisp Commands for Controlling Trace Output......................................................................54
A.3 Trace Constraint Syntax ...........................................................................................................55
A.4 Event Types.................................................................................................................................55

Appendix B: Apex Library 59

Appendix C: Troubleshooting 60
C.1 Common Problems...................................................................................................................60
C.2 Known Bugs................................................................................................................................61

Appendix D: Pattern Matching 62

Appendix E: Application Definition File Example 63

Appendix F: Starting Apex within Allegro Common Lisp 66



Apex Reference Manual (version 2.4.2)   -   Introduction   1

1.1 What is Apex?

Apex is a computer application for generating adaptive, intelligent behavior in complex 
environments. It is the principal element of the Apex System that includes a range of 
components for modeling, simulating and analyzing human behavior. Intended uses in-
clude:

• Helping engineers evaluate and design human-machine systems
• Anticipating how newly introduced technologies will affect human operators
• Standing in for human participants in a training simulation
• Exploring or illustrating scientific theories of human performance

The Apex approach to human modeling separates aspects of behavior and performance 
that apply to intelligent agents in general from aspects that are particular to humans. 
The Action Selection Architecture (ASA) integrates AI techniques such as hierarchi-
cal planning and online-scheduling seen as useful for creating agents with human-lev-
el ability. By building capabilities into the architecture and providing a high-level lan-
guage for behavior representation, Apex makes it easier to create human agent mod-
els for complex task environments. Findings from cognitive psychology and other ar-
eas concerned with human performance are incorporated into the Human Resource Ar-
chitecture (HRA), which parameterizes and constrains the general agent model.  A hu-
man model in Apex combines the ASA and HRA with a set of behavior representations, 
some specific to the task at hand, others general across many tasks.

Apex is meant to be a practical tool. It has proven successful in automating a Hu-
man-Computer Interaction analysis method called GOMS, including an especially pow-
erful but complex variant called CPM-GOMS. The approach has also been useful for 
rapidly developing simulations of normative human behavior and for reconstructing in-
cidents involving human error.

As a practical tool, one crucial consideration is to minimize the time and exper-
tise required to build new models. This goal influences every aspect of Apex. For exam-
ple, in production-system based cognitive architectures, behaviors are represented at an 

1.0 Introduction



Apex Reference Manual (version 2.4.2)   -   Introduction   2

“atomic” level at which the mechanisms of cognitive processing can be described in de-
tail. In Apex, behavior is represented at a high-level, allowing modelers to ignore how 
behavior is generated and focus on what behaviors are desired. This can be viewed as 
trading usefulness at representing scientific theories of cognition for usefulness at rep-
resenting complex, large-scale tasks. Similarly, Apex incorporates approaches to many 
high-level aspects of cognition such as selecting action under uncertainty, managing 
concurrent tasks, and task interleaving. These capabilities are relatively easy to invoke 
though a modeler is provided little flexibility in representing how they are realized.

In developing Apex, it has become clear that constructing a practical, broadly ap-
plicable human-system modeling tool is too great a job for any small team of individ-
uals. Given the great number of issues to be addressed and the many different kinds of 
expertise needed, such an endeavor is most naturally carried out through a distributed 
development process. The design of the Apex system lends itself to distributed develop-
ment. While the Action Selection Architecture is complex and its subcomponents tight-
ly coupled, the other elements of the system are modular and thus relatively easy to ex-
tend, modify or replace. For example, cognitive, perceptual and motor faculties repre-
sented in the resource architecture are completely independent of the core action-se-
lection mechanism, allowing modelers to “plug-in” alternative sub-models. Similar-
ly, Apex includes a set of reusable “building blocks” for new models that can easily be 
modified or added to. This document is intended mainly to support the use of Apex in 
its current form but also provides important information for developing new Apex ele-
ments.

1.2 System Components

Software components of the Apex system fall into four categories or component layers 
including: the intelligent agent layer, the human/environment layer, the infrastructure 
layer and the user layer. The intelligent agent layer provides the ability to specify simu-
lation entities with complex behavior reflecting goals, new events and “how to” knowl-
edge. Its primary use in Apex is to model human operators, although it is also useful 
for modeling other simulation entities such as robots and aircraft autopilots. The intelli-
gent agent layer currently includes a single component: the Action Selection Architec-
ture (ASA), an import from the field of artificial intelligence originally designed to con-
trol mobile robots acting in complex, real-world environments. The capabilities it pro-
vides facilitate simulation of relatively sophisticated aspects of human behavior such as 
adapting to time-pressure, coping with uncertainty, and interleaving multiple tasks.

The human/environment layer includes a wide range of components for specify-
ing and making inferences about humans and other entities that populate a simulation. 
Important subsets of these components are human resources models – representations 
of human cognitive, perceptual and motor faculties such as hands and eyes – which to-
gether comprise the Human Resource Architecture (HRA). Each resource model speci-
fies performance-limiting characteristics. For example, the vision model specifies a re-
stricted field of view, variable acuity, and a time lag between sensing and interpreting 
visual information. The agent and resource architectures combine to model a human 
agent. While the Action Selection Architecture provides the ability to engage in com-



Apex Reference Manual (version 2.4.2)   -   Introduction   3

plex behavior, the resource architecture causes this behavior to conform to human lim-
its.

Also included in the human/environment layer are means for representing and 
reasoning about physical spaces (locales) and the spatial (e.g. containment, attachment, 
adjacency) and visual properties (e.g. color, orientation) of objects in a locale. Oth-
er components in this layer are building blocks for constructing models in human-com-
puter interaction domains. These include representations of interface widgets (e.g. but-
tons, mice, keyboards) and of behaviors for using those widgets. The common theme 
for the components of this layer is that they are ingredients for building models of hu-
man-machine systems. Though intended to be reusable, they should not be considered 
core components of the Apex system. Users are encouraged to extend or replace these 
elements as they see fit.

The infrastructure layer provides essential services including simulation, trace 
event logging and mechanisms for interoperating with non-Apex processes such as an 
external simulation of a physical environment. The simulation component is composed 
of three parts: a simple language for defining “objects” to be simulated, a simulation en-
gine whose job it is to carry out the actual simulation process, and a Lisp interface for 
controlling the simulation process. Some extensions to the Apex system, including de-
velopment of new human resource models, require familiarity with simulation mecha-
nisms and other components of the infrastructure layer. However, most users will prob-
ably need to know little more than how to operate the simulation engine – e.g. to begin 
or pause a simulation trial.

The user interface layer provides components to facilitate model construction, 
model debugging, and analysis and visualization of simulation output. The central ele-
ment of this layer is Sherpa, a GUI that provides a range of services including buttons 
(shortcuts) for controlling the simulation engine, tools for handling large volumes of 
trace output, tools for examining simulation entities during and after a run, and a facili-
ty for automatically generating graphical representations of agent behavior.

To apply Apex in a particular domain, a user creates a simworld – a representa-
tion of a particular task and task environment. For example, to simulate people using a 
new automatic banking machine, an Apex user would represent the new machine’s ap-
pearance and behavior, the procedural knowledge needed to operate it, and a scenario 
providing specifications for a particular simulation run. Together, the Apex system and 
user-defined simworld elements constitute an Apex application. To develop new appli-
cations, a user should be comfortable programming in Lisp and should become familiar 
with the contents of this manual.

1.3 Getting More Information

This document focuses on the practical aspects of using Apex. For the current version of 
Apex and this document, visit http://human-factors.arc.nasa.gov/apex. More information is 
available from several sources. Published papers describe many aspects of Apex including: 

• using Apex for CPM-GOMS (John, et al. 2002)

http://human-factors.arc.nasa.gov/apex


Apex Reference Manual (version 2.4.2)   -   Introduction   4

• GOMS analyses (Freed and Remington, 2000a)
• human error prediction (Freed and Remington, 1998)
• human-system modeling methodology (Freed and Remington 2000b; Freed, 

Shafto and Remington 1998; Freed and Shafto 1997)
• multitask management (Freed 2000; Freed 1998a)
• detailed description of the Apex Action Selection Architecture and the 

modeling approach it supports (Freed 1998b)

To report a bug or consult on a technical problem, contact the Apex development team, 
apexhelp@eos.arc.nasa.gov. For information related to the development of the Apex 
system send an email to Michael Freed, mfreed@arc.nasa.gov.

Extending and developing applications in Apex may require programming in 
Common Lisp. The complete text of Common Lisp by Guy Steele is at: http://www-
2.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/cltl2.html.

1.4 Conventions

In order to make this manual easier to read, the following typography conventions have been 
adopted. When code is shown, it appears in 11 pt Courier.
For example, 

(procedure
(index (start-engine))
(step s1 (turn-key))

When a section of code is of particular importance, it is in bold 11 pt Courier. 
The simob class is the main focus of this example:

(defclass book (simob); BOOK is a subclass of SIMOB

User input is shown in chevrons (i.e. < >) and sometimes has a qualifying statement fol-
lowing it. For example,

(apex-info :version <version>)
 where <version> is a string.

So, the actual code a user enters would look something like this:

(apex-info :version “2.4”)

The syntax of programming is displayed in italic 12 pt Times New Roman similar to 
this:

(procedure [:concurrent] <index-clause> <procedure-level-clause>+)

mailto:apexhelp@eos.arc.nasa.gov
mailto:mfreed@arc.nasa.gov
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/cltl2.html
http://www-2.cs.cmu.edu/afs/cs.cmu.edu/project/ai-repository/ai/html/cltl/cltl2.html


Apex Reference Manual (version 2.4.2)   -   Getting Started   5

2.1. Setting up

To use Apex you’ll need the following software:

1. The Apex system
Using a standard web browser, Apex can be downloaded from the following 
web site: http://human-factors.arc.nasa.gov/apex.

Apex is available for Macintosh, Windows, Linux, and Solaris based comput-
ers. Installation is simple as Apex comes “pre-built” and ready to start.

2. Java Runtime Environment (JRE)
This is most likely already installed. If needed, the JRE may be obtained from 
the Apex web site along with installation instructions (see the README file ).

3. Text editor
Developing Apex applications requires programming in Common Lisp. By 
default, Apex runs inside GNU Emacs, the most popular editor for Lisp pro-
gramming. However, any other text editor may be used.

2.2 Quick Tour

This section outlines the basic elements of using Apex via Sherpa, its graphical user in-
terface. Using the attached Sherpa diagrams as a reference, follow these instructions to 
load, run, and inspect the results of a sample scenario modeling a person operating an 
automated teller machine (ATM).

1. Start Apex
Directions for how to start and exit Apex, which vary depending upon operat-
ing system, are found in the GettingStarted.html document in the Apex instal-

2.0 Getting Started

http://human-factors.arc.nasa.gov/apex


Apex Reference Manual (version 2.4.2)   -   Getting Started   6

lation folder/directory.  Consulting these instructions, start Apex and its graph-
ical user interface, Sherpa.

2. Load an Application
a) Click the Start button in Sherpa. This “connects” Sherpa to the Apex sys-
tem (which runs as a separate application).

Figure 2.1 Sherpa’s user interface: Slice View, Inspect View, and Trace View



Apex Reference Manual (version 2.4.2)   -   Getting Started   7

b) Open an application. Select Load Application from the File menu. Using 
the directory browser, open the file <apex>/examples/atm-worlds/cpm.lisp, 
where <apex> is the Apex installation directory. Sherpa’s screen will change 
to reveal the application control and viewing interface.

3. Run the Application
Press the Play button. Events will print in the Trace View as the simulation 
runs.

4. Inspect Objects
The Slice View lists the scenario objects in a collapsible hierarchical fashion. 
Click on the “lever” icons to expand objects. Click on objects to display infor-
mation about them in Inspect View.

5. View the PERT Chart
Click on the PERT chart button to generate a PERT chart for the simulation 
run. Inspect the chart and experiment with its manipulation controls.

Note that the PERT chart window has become the top view tab. To bring up 
the application control interface, click on the ATM-CPM-WORLD view tab.

6. Change Trace settings
Click on the Events tab to access the Event View. By default, only a small 
fraction of the trace data produced during simulation is shown. To see more, 
click on the Set  show level drop-down menu and select asa-low, then click the 
Trace button to show a new (larger) subset of the events generated in the pre-
vious simulation run. See section 3.5.1 for more on controlling trace display.



Apex Reference Manual (version 2.4.2)   -   Getting Started   8

Figure 2.2 Sherpa’s user interface: Event View



Apex Reference Manual (version 2.4.2)   -   Using Apex   9

3.0 Using Apex

3.1 Interacting With Apex

Users interact with Apex mainly through three interface elements: a standard text editor 
such as Emacs; Apex’s graphical user interface, Sherpa; and a Lisp interactive window, 
known as a Listener. In most cases, a user will wish to have all three of these elements 
available when building and running Apex applications.

A text editor is needed to create and modify Apex applications. Apex applications 
are written in the Common Lisp programming language, for which the most popular ed-
itor is Emacs. By default, Apex starts up inside an Emacs “buffer window”, allowing 
access to the Lisp/Emacs integration provided by Apex’s underlying Lisp system. If so 
desired, a different text editor may be used.

Sherpa is used to start Apex application runs, examine application elements, and 
to generate, format and display application output. It is possible to use Apex without us-
ing Sherpa. However, Sherpa provides the only means for obtaining graphical output 
from a simulation (e.g. PERT charts, object trees) and for pausing an application run in-
teractively.

The Lisp Listener (or simply Listener) is an interactive text window always pres-
ent when Apex is running. Normally, this is the *apex* buffer inside Emacs. Listeners 
are inherent to Common Lisp systems. Interacting through the Listener can be especial-
ly valuable when debugging Lisp code. A Listener can also be used in place of Sherpa 
as a primary means of interacting with Apex1. This can be done in two ways. First, the 
user can directly invoke Lisp functions that control Apex using functions described be-
low (e.g. (startapp)). Second, a prompt-driven interface can be invoked by entering

(apex)

1 Warning: using the Listener to interact with Apex while also using Sherpa may lead to 
unexpected behavior – only one means should be used in an Apex session.



Apex Reference Manual (version 2.4.2)   -   Using Apex   10

in the Listener. This provides access to all the features of Apex, except for the graphical 
features of Sherpa. The prompt-driven interface is still in development; user feedback is 
especially encouraged.

Listeners display debugging information and other messages while Apex runs. 
Most of what is normally displayed is internal information that can be ignored. Howev-
er, if an error occurs, the Apex run is interrupted and a debugging prompt appears, ac-
companied by an error message. Such occurrences are most frequent during develop-
ment or modification of a model and are usually caused by Lisp programming errors.

3.2 Introduction to Apex Applications

Apex supports two classes of user applications:

Native applications – Applications that are fully contained in Apex. They use the Apex 
simulation engine, allowing an entire application to be a single process. For example, 
many Apex applications simulate one or more humans in a specified physical environ-
ment. Such applications, usually termed simworlds, include behavior models for all 
agents as well as object definitions describing the structure, appearance, and relation-
ships between simulated physical objects.

Non-native applications – Applications in which one or more Apex components inter-
act with an application external to Apex such as a simulation run on another comput-
er or an embodied robot. The X-Plane® example provided with Apex is an example of a 
non-native application.

3.3 Loading an Application

In order to run an Apex application, it must first be loaded into Apex. There are three 
ways to do this.

1. Select from a list of recently loaded applications. In Sherpa, select Recent 
Applications from the File menu. In the Listener, invoke the Apex 
prompt (if necessary) by typing (apex) and enter load or lower case letter 
l.

By default, Apex remembers the last five applications loaded. This value 
can be changed with the expression (change-load-history-size N) 
where N is a natural number. This can be entered in the Listener to affect the 
current session or be made persistent by placing it in your preferences file 
(3.6). If desired, the load history can be cleared by typing (clear-load-
history) in the Listener.

2. Browse files and select an application to load from your local file system. 



Apex Reference Manual (version 2.4.2)   -   Using Apex   11

This is supported only in Sherpa. Select Load Application from the File 
menu.2, 3

3. Load a specified application from the Listener.  Invoke the Apex prompt (if 
necessary) by typing (apex) and enter load or l. Enter the number of the 
last menu selection and you’ll be prompted for an application file. Type in 
the full pathname of the desired file as a string, e.g.

“c:/apexapps/myworld.lisp”3

3.4 Running an Application

Once an application is loaded, it may be manipulated in the following ways:

Starting the application - In Sherpa, click the Play button. In the Listener, type 
(startapp). Unless there is user intervention, the application will run to completion 
or until a scheduled pause point (simulations only) arrives.

Pausing a running application - In Sherpa, click the Pause button. (If the Pause button 
is not selectable, pausing is not available for the application). It is not possible to inter-
actively pause an application in the Listener, though simulations can be programmed to 
pause automatically in various ways.

Resetting the application - This restores the application to its initial state. In Sherpa, 
click the Reset button. In the Listener, type (resetapp).

Single-stepping the application - Some applications have the ability to be advanced 
one step (e.g. time unit) at a time. Native Apex applications are constructed using an 
event driven simulation mechanism. Thus, for these applications, a step advances the 
simulation to the next scheduled simulation event(s) rather than by a fixed amount of 
simulated time. Click the Step button in Sherpa, which will be selectable if the appli-
cation supports single stepping. In the Listener, type (steppapp) (which will have no 
effect if single-stepping is not supported).

2 Warning: currently this feature will not work when Sherpa and Apex are running on 
different computers. In this case, you must use method (3) to load a new application (which 
subsequently makes the application selectable in the recent application menu).

3 Warning: you must enter or select an Application Definition File (3.5.2). Loading any other 
kind of file will result in an unspecified behavior.



Apex Reference Manual (version 2.4.2)   -   Using Apex   12

3.5 Creating a New Application

The information covered in this section apply to both native and non-native Apex appli-
cations.

3.5.1 Lisp Programming and Emacs

Apex applications are computer programs written in the Common Lisp language. They 
include code written in the Apex API, code written in PDL, and possibly arbitrary Lisp 
code Applications are created using a text editor.  Emacs is strongly recommended be-
cause of its support for Lisp programming and convenient interface to Allegro Common 
Lisp, the Lisp system upon which Apex is built. A good way to learn Emacs is from a 
tutorial accessible through its Help menu.

3.5.2 Application Definition File

Loading an application (3.3) causes Apex to load an Application Definition File (ADF). 
Every ADF contains the form:

(defapplication …)

This form names the application, specifies libraries (3.5.3) and other files that need to 
be loaded and defines how to initialize the application. It can also contain code that cus-
tomizes the behavior of the application as described in section 3.4. See 5.4 for detailed 
information about this form. Many examples can be found in <apex>/examples, where 
<apex> is a directory name created by the user at the time of Apex’s installation. A full 
example of an ADF is shown in Appendix E.

3.5.3 Application Files

It is acceptable for an Application Definition File (3.5.2) to include all the code (includ-
ing PDL behavior specifications) needed for an application, but code from additional 
files will often be needed. This code can be made part of the application definition in ei-
ther of two ways.

1. Files may be listed in the :files clause of defapplication (5.4).

2. Files may be loaded arbitrarily, anywhere in the ADF (3.5.2) or other Lisp 
files, using the function:

(require-apex-file <filename>)

where <filename> is a string naming the file.



Apex Reference Manual (version 2.4.2)   -   Using Apex   13

The additional application files are typically Lisp files4, but may include non-Lisp files, 
such as binary files used via Lisp’s foreign function interface. An important rule is that 
Lisp source files must have a Lisp extension (.lisp, .cl, or .lsp) and non-Lisp files 
must not have a Lisp extension.

All Lisp files that comprise an application, including the Application Definition 
File and library files (discussed in the next section), are required to contain the form:

(apex-info :version <version>)

where <version> is a string naming the version of Apex for which the application is 
written. Example application files that come with Apex already contain this form. In 
newly created files, use “2.4” for <version>. The purpose of this form is to help flag 
potential incompatibilities between applications and future versions of Apex.

3.5.4 Libraries

A body of Apex code (e.g. PDL procedures, class definitions) can be shared convenient-
ly among different applications using libraries. A library is in general a collection of  re-
lated definitions that are grouped together for sharing across applications. A library 
might consist of one file or many files, but this difference is transparent to the users of 
libraries.

3.5.4.1 Using Libraries

An existing library may be included in an Apex application in either of two ways:

1. Include its name in the :libraries clause of defapplication, e.g.

(defapplication “My World”
  :libraries (“human” “Boeing757-cockpit”)
 …)

2. Load it directly (on demand) with the require-apex-library form, e.g.

(require-apex-library “human”)

3.5.4.2 Creating Libraries

Like an Apex application, a library can be one file, or have multi-file structure. It has 

4 Lisp files may be loaded into Apex in either source or compiled form, but at this time 
compilation of Lisp source is not performed automatically by Apex.



Apex Reference Manual (version 2.4.2)   -   Using Apex   14

a top-level file, called a library file, which may contain Lisp code. This file may con-
stitute the entire library, or it may include other libraries (using require-apex-li-
brary defined in 3.5.4.1) or other files (using require-apex-file defined in 3.5.3). 
A library file’s name must have the suffix –apexlib (e.g. human-apexlib.lisp). A 
library may be filed anywhere, though if it has several or more files, the library can be 
placed in a directory named after the library’s “base name”. For example, the human li-
brary can be found if it is filed as either human-apexlib.lisp or human/human-
apexlib.lisp). Any number of libraries can exist and be available to applications.

3.5.4.3 Finding Libraries

The global variable *apex-library-path* specifies where libraries are found.  It is 
a list of directories that are searched in the given order. The default value of this vari-
able is:

(:application “apex:apexlib” “apex:examples:apexlib”)

The special symbol :application means that the application directory itself is first 
searched for libraries. The following two strings in this list use Common Lisp’s logical 
pathname syntax. Any valid filename syntax for your computer platform may be used.

This search path may be modified as needed. For example, to have Apex first 
look in its provided libraries directory (3.5.4.4) and then in the directory C:/me/
apexlib, enter the following form in the Listener:

(setq *apex-library-path* ‘(“apex:apexlib” 
 “C:/me/apexlib”))

For convenience, this form may be put in the user preferences file (3.6) and thus be in 
effect for all Apex sessions.

3.5.4.4 Provided Libraries

Apex comes with two sets of libraries:

1. apex:apexlib contains Components thought to be useful for a wide range 
of applications

2. apex:examples:apexlib contains libraries used by the example 
applications provided with Apex.

See the comments in the library files for a description of the libraries.



Apex Reference Manual (version 2.4.2)   -   Using Apex   15

3.5.5 Worldbuilder

Worldbuilder provides a graphical interface for building physical environment mod-
els for Apex simworlds (native applications). It was created by students from Carnegie 
Mellon University and is available for download at the Apex web site.

3.6 User Settings and Other Files

When Apex starts, it looks for the existence of a user settings file, and loads it if the file 
exists. This is a Lisp file that users may create. It must be saved as the hidden file ~/.ap-
exprefs on Unix-like systems and apex:apexprefs in Windows. This file is for custom-
izing the user’s Lisp or Apex environment. It may contain arbitrary Lisp code, though 
its common function is for setting Apex parameters such as the library search path 
(3.5.4.3).

Apex automatically maintains other user-related information between sessions in 
two different files. There is the hidden file ~/.apexinfo on Unix-like systems, apex:
apexinfo in Windows, and apex:sherpa.ini on all platforms. These files are generated 
and maintained by Apex. Do not edit them!

3.7 Apex Output

Running an Apex application can generate two kinds of output: event traces and PERT 
charts.

3.7.1 Generating Event Traces

The activities of Apex agents and other entities (if any) are recorded as a chronology 
of events in an event history. Events are displayed as single lines of text specifying the 
time the event occurred, an associated agent (if relevant) and a description of the event. 
For example, the following event

[4235 Fred] (TASK-STARTED #{TASK-10 (SIGN-IN)})

represents that at time 4235 the agent Fred began a task to “sign in.” By default, time 
is measured in milliseconds after the start of the Apex application run. If occurring in 
a simulation, this indicates simulated time – i.e. time in the chronological frame of the 
simulation, not in the real world.

Events are displayed in Sherpa’s Trace View as they occur while the application 
runs. The trace appears in the Listener when Sherpa is not being used. Sherpa’s trace 
view has a limited scroll size and it is possible to redirect trace output to the Listener by 
checking the “Trace To Listener” flag in the Trace menu. Regardless of whether events 
are displayed during a run, they may be viewed after a run (or while the application has 
been paused) by pressing the Trace button (see Figure 2.1). To request a trace in the Lis-

http://human-factors.arc.nasa.gov/apex


Apex Reference Manual (version 2.4.2)   -   Using Apex   16

tener, type (generate-trace).
A simulation trace may be viewed in its entirety, but this may contain thousands 

of events or more. A user can specify filter criteria to reduce the amount of trace infor-
mation displayed. Filtering criteria are applied both to trace data displayed at runtime 
and to trace derived from the stored event history. Events are most often filtered based 
on event type determined by the first element of an event description. For example, the 
types of the two example events below are task-started and suspended, respectively.

[12 Fred] (task-started #{task-21 (fly-to-waypoint)}
[45 Fred] (suspended #{task-19 (push-button-1)}

There are three basic ways to filter event traces:

1. The first is to specify a show level. A show level is a name that specifies 
a collection of event types to be shown. In Sherpa, click on the Event tab 
in the leftmost display pane; all event types associated with the currently 
loaded application are displayed next to checkboxes. The Show Level menu 
allows selection among predefined show levels. Selecting a show level 
causes event type checkboxes associated with that show level to become 
checked. In the Listener, show levels are set with the show function when 
used in the following form:

(show :level <level-name>)

where <level-name> is a symbol without quotes. Predefined show levels 
are described in Appendix A.

2. Using Sherpa, specify particular event-types of interest. Select the event 
tab as above, then click on checkboxes to toggle whether or not to have a 
particular event type shown. Note that selecting or unselecting event types 
modifies the choices associated with the previous show-level, though that 
show-level is still displayed on the interface. In the Lisp Listener, event 
types are selected with the show function when used in the following form:

(show <event-type>)

where <event-type> is a symbol without quotes. Event types are listed in 
Appendix A.

3. In the Listener (but not Sherpa), it is possible to filter events on parameters 
other than, and in addition to, event types. Like the previous features, this is 
done using the show function. The show function is described in Appendix 
A.

Traces generated with a particular filter setting may be saved to a file by typing the fol-
lowing form in the Listener:



Apex Reference Manual (version 2.4.2)   -   Using Apex   17

(save-trace <filename>)

where filename is a string and may either be a full pathname, or just a filename. In the 
latter case, the trace is saved in the current application’s directory.

3.7.2 Generating and Examining PERT Charts

A PERT chart for a specific agent in a simulation run may be generated by selecting de-
sired agents in the Slice View, then clicking the PERT chart button located above the 
trace view pane. New tabs for the PERT charts are created and displayed. If no agent 
was selected, PERT charts for all agents will be generated. If there are more than 5 
agents, a warning and confirmation request will appear first. PERT charts cannot be 
generated via the Listener. The PERT chart view can be manipulated in several ways.

• A slider bar provides zoom control
• The expand/contract buttons control distance between PERT boxes
• The timeline button toggles between a PERT view and a timeline view

3.7.3 Exporting a PERT Chart to Microsoft PowerPoint

Sherpa cannot create Microsoft PowerPoint® representations of PERT charts direct-
ly. Instead, it outputs Visual Basic® macros that can be read in from PowerPoint. PERT 
charts you create using the procedure below will not likely fit onto one slide, but will 
tend to trail off the right hand edge. You’ll need to edit charts in Sherpa and/or Power-
Point to get good results.

1. Create a PERT chart in Sherpa

2. In Sherpa, press the button with the PowerPoint icon. Then select a folder 
and filename at the prompt. A Visual Basic macro representing the PERT 
chart will be written out at this location.

3. From PowerPoint select from the menu: Tools > Macro > Visual Basic 
Editor. This will open the visual basic editor. 

4. From PowerPoint, load the macro created in step 2.

On a Mac: From the Visual Basic interface, select Insert > Module. Select 
Insert > File… Set the Show field in the dialog selection box to All Files. 
Select the file you created in step 2.

On a PC: From the Visual Basic interface, select File > Import File. Select 
the file you created in step 2.



Apex Reference Manual (version 2.4.2)   -   Using Apex   18

5. Return to PowerPoint and click on the slide to contain the PERT chart. 
Select from the menu: Tools > Macro > Macros and run the macro 
“CreatePERTChart”. For a large PERT chart, this may take a few moments 
to complete.

Note: To remove files created in step 2 (which will otherwise accumulate), go 
to the Visual Basic editor and select ModuleX in the Project window. From the 
menu, then select: File > Remove ModuleX.

3.8 System Patches

Patches provide extensions, modifications or fixes to the existing Apex software without 
requiring reinstallation. Users can acquire patches from the Apex web site:

http://human-factors.arc.nasa.gov/apex

The exact URL for patches is not known at the time of this writing, but you’ll be able 
to find it easily. Instructions for downloading and installing patches will also be found 
there, but the following is a synopsis of the process.

Download all of the .lisp files available and put them in your apex:patches di-
rectory. Delete any patch files with the same name, including any compiled versions 
(e.g. those ending in .fasl). Newly installed patches will automatically be in effect the 
next time you start Apex. If you wish to install the patches without restarting Apex, type 
(load-apex-patches) at the Lisp prompt. A brief description of each patch is found in the 
file.

3.9 Getting Help

If you experience problems with Apex, please consult the Troubleshooting sections in 
this manual and in your Apex installation instructions. If necessary, contact the Apex 
development team by sending email to:

apexhelp@eos.arc.nasa.gov

Email is the strongly preferred means of technical support, and usually receives fast-
er response than other means of contact. If you are reporting what appears to be a bug, 
first see if you can reproduce it. Please include the following information in your email:

• Detailed description of the problem, including any error messages that 
appeared (in their entirety, cut and pasted if possible), the last thing you did 
before the problem occurred, and whether you could reproduce the problem.

• Your operating platform: type of computer and operating system, version of Apex 
(in “Help” menu of Sherpa), and version of Common Lisp (if applicable).

http://human-factors.arc.nasa.gov/apex
http://human-factors.arc.nasa.gov/apex


Apex Reference Manual (version 2.4.2)   -   Procedure Description Language (PDL)   19

4.0 Procedure Description Language (PDL)
“By relieving the brain of all unnecessary work, a good notation 
sets it free to concentrate on more advanced problems, and, in effect, 
increases the mental power of the race.”

- Alfred North Whitehead

Procedure Description Language (PDL) is a formal language used to specify the behav-
ior of Apex agents. PDL can be seen as a means of representing particular kinds of con-
tent – e.g. normative behavior as defined by standard operating procedures; a task anal-
ysis describing observed or expected behavior; a human cognitive model reflecting pro-
cedural and declarative memory. However, making effective use of PDL requires also 
understanding it as a programming language for invoking the capabilities of the Apex 
Action Selection Architecture. This section describes the syntax of PDL following a 
brief overview of the workings of the Action Selection Architecture – see Freed (1998a) 
for more detail.

The central language construct in PDL is a procedure, which contains at least an 
index clause and one or more step clauses. The index uniquely identifies the procedure 
and typically describes what kind of task the procedure is used to accomplish. Each step 
clause describes a subtask or auxiliary activity prescribed by the procedure.

(procedure
  (index (turn-on-headlights)
  (step s1 (clear-hand left-hand))
  (step s2 (determine-location headlight-ctl => ?loc)
  (step s3 (grasp knob left-hand ?loc) (waitfor ?s1 ?s2))
  (step s4 (pull knob left-hand 0.4) (waitfor ?s3))
  (step s5 (ungrasp left-hand) (waitfor ?s4))
  (step s6 (terminate) (waitfor ?s5)))

The procedure above represents a method for turning on the headlights in some cars and 



Apex Reference Manual (version 2.4.2)   -   Procedure Description Language (PDL)   20

illustrates several important aspects of PDL. One important point is that a procedure’s 
steps are not necessarily carried out in the order listed or even in a sequence. Instead, 
steps are assumed to be concurrently executable unless otherwise specified. If step or-
dering is desired, a waitfor clause is used to specify that the completion (termination) 
of one step is a precondition for the start (enablement) of another. In the example above, 
the steps labeled s1 and s2 do not contain waitfor clauses and thus have no precon-
ditions; these steps can begin execution as soon as the procedure is invoked and can 
run concurrently. Step s3, in contrast, includes the clause (waitfor ?s1 ?s2). This 
means that step s3 becomes enabled only when steps s1 and s2 have terminated.

Procedures are invoked to carry out an agent’s active tasks. Tasks, which can be 
thought of as agent goals5, are stored on a structure called the agenda internal to the Ac-
tion Selection Architecture. When a task on the agenda becomes enabled (eligible for 
immediate execution), what happens next depends on whether or not the task corre-
sponds to a primitive action. If so, the specified action is carried out and then the task is 
terminated. There are a limited number of primitive action types (see section 4.3), each 
with a distinct effect.

If the task is not a primitive, the Action Selection Architecture retrieves a proce-
dure whose index clause matches the task. For example, a task of the form (turn-on-
headlights) matches the index clause of the procedure above and would thus be 
retrieved once the task became enabled. step clauses in the selected procedure are then 
used as templates to generate new tasks, which are then added to the agenda. It is con-
ventional to refer to these tasks as subtasks of the original and, more generally, to use 
genealogical terms such as child and parent to describe task relationships. In this ex-
ample, there are six steps so six new tasks will be created. The process of decomposing 
a task into subtasks on the basis of a stored procedure is called task refinement. Since 
some of the tasks generated through this process may themselves be non-primitive, re-
finement can be carried out recursively. This results in the creation of a task hierarchy.

An Apex agent initially has on its agenda a single task specified by the user, 
which defaults to the form (do-domain). All agent behavior results from tasks de-
scending hierarchically from this initial task. Thus, the specification of agent behavior 
for a given application (model) must include either a procedure with the index clause

(index (do-domain))

or one whose index clause matches the specified initial task. Steps of this procedure 
should specify not only the main “foreground” activities of the agent, but also any ap-
propriate background activities (e.g. low priority maintenance of situation awareness) 
and even reflexes (e.g. pupil response to light).

5 The term task generalizes the concept of a classical goal – i.e. a well-defined state, expressible as a 
proposition, that the agent can be seen as desiring and intending to bring about (e.g. “be at home”). 
Tasks can also, e.g., encompass multiple goals (“be in car seat with engine started and seatbelt fas-
tened”), specify goals with indefinite state (“finish chores”), specify goals of action rather than state 
(“scan security perimeter ”), and couple goals to arbitrary constraints (“be at home by 6pm”).



Apex Reference Manual (version 2.4.2)   -   Procedure Description Language (PDL)   21

4.1 Action Selection Architecture (ASA)

The Action Selection Architecture6 is the algorithm Apex uses to generate behavior. In-
put to the algorithm consists of events that the agent might respond to and a set of pre-
defined PDL procedures. The architecture outputs commands to resources. When used 
to generate behavior for a simulated human agent, resources are representations of cog-
nitive, perceptual and motor faculties such as hands and eyes. Since the Action Selec-
tion Architecture could be used to model other entities with complex behavior such as 
robots and autopiloted aircraft, resources could correspond to, e.g. robotic arms or flight 
control surfaces. The Action Selection Architecture incorporates a range of functional 
capabilities accessible through PDL. These functions fall into four categories:

• Hierarchical action selection
• Reactive control
• Resource scheduling
• General programming language functions

Hierarchical action selection refers to the process of recursively decomposing a high-
level task into subtasks, down to the level of primitive actions. The basic process of se-
lecting action by hierarchical task decomposition is simple. Tasks become enabled 
when their associated preconditions have been satisfied. If the task is not a primitive, a 
procedure whose index clause matches the task is retrieved and one new task (subtask) 
is created for each step of the selected procedure. If the enabled task is a primitive, the 
specified action is executed and the task is terminated.

PDL provides flexibility in controlling how and when task decomposition takes 
place. The issue of how to decompose a task arises because there are sometimes alterna-
tive ways to achieve a goal, but which is best will vary with circumstance. Criteria for 
selecting between different procedures are represented in the index clause (see section 
4.2.2) and the select clause (4.2.5). The issue of when to decompose a task is equally 
crucial since an agent will often lack information needed to select the appropriate pro-
cedure until a task is in progress. The ability to specify what needs to be known in order 
to select a procedure (informational preconditions) is provided by the waitfor clause 
(4.2.4).

Reactive control refers to a set of abilities for interacting in a dynamic task environ-
ment. As noted above, the ability to cope with uncertainty in the environment some-
times depends on being able to delay commitment to action; when crucial information 
becomes available, the agent can select a response. Another aspect of reactivity is the 
ability to handle a range of contingencies such as failure, interruption, unexpected side 
effects, unexpectedly early success and so on. Integrating contingency-handling behav-

6 Designated the Action Selection Architecture in other documents. To some, this term implies that the 
architecture performs AI planning tasks, but not scheduling or control. The term Action selection archi-
tecture was chosen to be happily ambiguous about the underlying technology.



Apex Reference Manual (version 2.4.2)   -   Procedure Description Language (PDL)   22

ior with nominal behavior is quite challenging and benefits from building certain prin-
ciples and heuristics into the architecture. For example, Apex incorporates a heuris-
tic preference for continuing an ongoing task over allowing a new task to interrupt. The 
preference can be increased or negated using the interrupt-cost construct (4.2.10).

Reactive mechanisms combined with looping (4.2.6) and branching (4.2.2, 4.2.4, 
and 4.2.5) allow closed-loop control – i.e. the ability to manage a continuous process 
based on feedback. The combination of discrete control mechanisms such as hierarchi-
cal action selection with continuous control mechanisms allows PDL to model a wide 
range of behaviors.

Resource scheduling refers to the ability to select execution times that meet specified 
constraints for a set of planned actions. Typically, an overriding goal is to make good 
(possibly optimal) use of limited resources. Actions can be scheduled to run concurrent-
ly unless they conflict over the need for a non-sharable resource (e.g. a hand) or are oth-
erwise constrained. For example, an eye-movement and an unguided hand movement 
such as pulling a grasped lever could proceed in parallel. PDL includes numerous claus-
es and primitive action types for dynamically asserting, retracting and parameterizing 
scheduling constraints (4.2.4, 4.2.8, 4.2.9, 4.2.10, 4.3.5, 4.3.6, and 4.3.7).

Scheduling is tightly integrated with reactive control and hierarchical planning. 
In a less tightly integrated approach, these functions might be assigned to modular el-
ements of the architecture and carried out in distinct phases of its action decision pro-
cess. In Apex, these activities are carried out opportunistically. For example, when the 
information to correctly decompose a task into subtasks becomes available, the archi-
tecture invokes hierarchical planning functions. Similarly, when there are a set of well-
specified tasks and scheduling constraints on the agenda, Apex invokes scheduling 
functions.

This has two important implications for the role of scheduling in Apex. First, 
scheduling applies uniformly to all levels in a task hierarchy. In contrast, many ap-
proaches assume that scheduling occurs at a fixed level – usually at the “top” where a 
schedule constitutes input to a planner. Second, the tasks and constraints that form input 
to the scheduler must be generated dynamically by hierarchical planning and reactive 
control mechanisms, or inferred from local (procedure-specific) constraints, evolving 
resource requirements, and changes in the execution state of current tasks. Basic sched-
uling capabilities can be employed without a detailed understanding of the architecture. 
For more advanced uses of these capabilities, it is hoped that the PDL construct descrip-
tions will prove helpful.  Further information can be found in Freed (1998a, 1998b).

General programming language functions such as looping and branching are includ-
ed in PDL language constructs. However, the user will sometimes wish to access data 
or functions not directly supported in PDL but available in the underlying Lisp lan-
guage. PDL supports callouts to Lisp that apply to different aspects of task execution 
including: precondition handling (4.2.4 and Appendix D), action selection (4.2.5), spec-
ification of execution parameters (4.2.6, 4.2.9, 4.2.10, and 4.2.11), and specification of 
the actions themselves (see “special procedures” in 4.2.1).



Apex Reference Manual (version 2.4.2)   -   Procedure Description Language (PDL)   23

4.2 PDL Syntax

PDL syntax will be described using the following conventions:
• ( ) all PDL constructs are enclosed by parentheses
• [ ] square-brackets enclose optional parameters
• < > angle-brackets enclose types rather than a literal values
• | vertical bars separate alternative values
• { } curly brackets enclose alternatives unless otherwise enclosed
• X+ means that 1 or more instances of X are required
• X* means that 0 or more instances of X are required

In addition, the following terms are used. A procedure-level clause is a language con-
struct embedded directly in a PDL procedure. Examples include index clauses and 
step clauses. Step-level clauses such as waitfor are embedded directly in a step 
clause. The procedure construct is itself a first-class construct, meaning that it is not 
embedded in any other language element. A pattern parameter is a parenthesized ex-
pression that may contain variables (denoted as a symbol starting with a question-mark 
such as ?x). Patterns, which are matched against each other by the pattern matcher (see 
Appendix D), appear in several PDL clauses. A Lisp symbol is a sequence of charac-
ters that that may include alphanumeric characters, dashes, and some other characters. 
A Lisp symbolic expression, or s-expression, is either a Lisp symbol or a list of symbols 
and Lisp expressions enclosed by parentheses. An Apex variable is a symbol whose first 
character is a question mark – e.g. ?x. Symbols and s-expressions in PDL clauses may 
contain Apex variables.

4.2.1 procedure

Type: first-class construct

Syntax:(procedure [:concurrent] <index-clause> <procedure-level-clause>+)
(procedure [:sequential|:ranked] <index-clause> <step-clause>+)
(procedure :special <index-clause> <procedure-level-clause>+ <s-expression>)

There are four types of procedures: concurrent, sequential, ranked and special. All types 
must contain an index clause. By default, procedures are of type concurrent. This means 
that all tasks generated from the procedure’s steps are assumed to be concurrently exe-
cutable, except where ordering is specified by waitfor clauses. A concurrent procedure 
will usually include an explicit termination step such as s4 in the example procedure 
below left. In this case, the parent task {task-15 (open door)} will terminate when the 
last of its subtasks {task-18 (push)} terminates.

(procedure 
   (index (open door))
   (step s1 (grasp door-handle))
   (step s2 (turn door-handle) (waitfor ?s1))



Apex Reference Manual (version 2.4.2)   -   Procedure Description Language (PDL)   24

   (step s3 (push) (waitfor ?s2))
   (step s4 (terminate (waitfor ?s3))))

As in this example, it is quite common to define procedures consisting of a totally or-
dered set of steps. Such procedures can be conveniently represented using the sequen-
tial procedure syntax. The following example is equivalent to the concurrent procedure 
above.

(procedure :sequential
   (index (open door))
   (grasp door-handle)
   (turn door-handle)
   (push))

A sequential procedure includes only an index clause and a list of steps to be carried out 
in the listed order. No terminate clause is specified. Only the activity-description argu-
ment of each step is specified; the symbol step, the step-tag argument and step-level 
clauses are not required or allowed. Sequential procedures are not really a separate type, 
but an alternative syntax. PDL mechanisms automatically translate them into equivalent 
concurrent procedures by adding a terminate step and waitfor clauses as needed to spec-
ify step order.

Ranked procedures abbreviate a concurrent procedure form in which rank claus-
es (4.2.13) are added to each step. Rank values in these procedures are in ascending or-
der of appearance. Thus, the following procedure is equivalent to the previous one:

(procedure 
   (index (open door)) 
   (step s1 (grasp door-handle)  (rank 1))
   (step s2 (turn door-handle)  (rank 2))
   (step s3 (push)  (rank 3))
   (step s4 (terminated) (waitfor ?s1 ?s2 ?s3)))

(procedure :ranked
   (index (open door))
   (grasp door-handle)
   (turn door-handle)
   (push))

Special procedures are a way to call Lisp code directly during task execution. This is 
useful for controlling and accessing data from processes external to the Action Selec-
tion Architecture and for carrying out functions that would be awkward or impossible to 
represent purely in PDL. In the first example below, the procedure uses the simulation 
engine function end-trial to stop the simulation from continuing (perhaps indefinite-
ly) past the point of interest.

(procedure :special
   (index (stop simulation trial))
   (end-trial))



Apex Reference Manual (version 2.4.2)   -   Procedure Description Language (PDL)   25

In the next example, a special procedure is used to compute the distance between two 
points in a plane. Values returned by the Lisp body of a special procedure are bound to 
variables in the return value form (if any) of the calling step (see 4.2.3). Thus, executing 
a step such as:

(step s5 (compute-distance ?p1 ?p2 => ?d) (waitfor ?s4))

would cause the procedure to be called and its return value bound to the variable ?d.

(procedure :special
   ; points are lists of the form (x y)
   (index (compute-distance ?point1 ?point2))
   (sqrt (exp (- (first ?point1) (first ?point2)) 2)
   (exp (- (second ?point1) (second ?point2)))))

Special procedures may include procedure-level clauses other than index, but may not 
include any step clauses. When a task for which a special procedure has been select-
ed becomes enabled, that task is executed and then terminated just as if it were a primi-
tive action.

4.2.2 index

Type: procedure-level clause

Syntax: (index <pattern>)

Each procedure must include a single index clause. The index pattern uniquely identi-
fies a procedure and, when matched to a task descriptor, indicates that the procedure is 
appropriate for carrying out the task. The pattern parameter is a parenthesized expres-
sion that can include constants and variables in any combination. The following are all 
valid index clauses:

(index (press button ?button))
(index (press button ?power-button))
(index (press button ?button with hand))
(index (press button ?button with foot))

Since index patterns are meant to uniquely identify a procedure, it is an error to have 
procedures with non-distinct indices. Distinctiveness arises from the length and con-
stant elements in the index pattern. For example, the first and second index clauses 
above are not distinct since the only difference is the name of a variable. In contrast, the 
3rd and 4th index clauses are distinct since they differ by a constant element.

Apex uses the pattern matcher from Norvig (1992), which provides a great deal 
of flexibility in specifying a pattern. For example, the following index clause includes 
a constraint that the pattern should not be considered a match if the value of the variable 
is self-destruct-button.



Apex Reference Manual (version 2.4.2)   -   Procedure Description Language (PDL)   26

(index (press button ?button 
   (?if (not (eql ?button ?self-destruct-button)))))

In the next example, the variable ?*.button-list will match to an arbitrary number 
of pattern elements. This provides the flexibility to create a procedure that presses a list 
of buttons without advance specification of how many buttons will be pressed.

(index (press buttons (?* button-list)))

See Norvig (1992) and Appendix D for more information on the pattern matcher.

4.2.3 step

Type: procedure-level clause

Syntax: (step <step-tag> <step-description [=> {var|pattern}]> [step-level-clause]*)

step clauses in a procedure specify the set of tasks to be created when the procedure is 
invoked and may contain additional information on how the tasks should be executed 
(e.g. ordering constraints). Each step must contain a step-tag and step-description; op-
tionally, an output variable and/or any number of step-level clauses may be added.

A step-tag can be any symbol (as defined by Lisp), although no two steps in a 
procedure can use the same tag. Step-tags provide a way for steps in a procedure to re-
fer to one another. In particular, whenever a new task is created from a procedure step, 
the Action Selection Architecture creates a variable based on the step tag and binds that 
variable to the new task. For example, when (step s4 (go west)) is used to create 
{task-92 (go west)}, the variable ?s4 is created and bound to the data structure for task-
92. The task refinement process also generates the variable ?self which is bound to 
the task being refined – i.e. the parent to task-92 in this example. This allows subtasks 
to refer to their parent task.

The step-description, the part of the step clause that describes behavior, must be 
a parenthesized expression corresponding either to the index of one or more procedures 
in the agent’s procedure library or to a PDL primitive action type (see section 4.3). It 
may contain variables. When a task is enabled, the value of the task description is set to 
equal the step description with any variables replaced by values. The task description 
is used to invoke a primitive action is appropriate, or if not, matched against procedure 
index clauses to select the correct procedure.

The step-description may include the special symbol => followed by a variable 
or other pattern. This specifies one or more output variables that become a return value 
when the task derived from a step terminates. Thus,

(step s1 (find volume control => ?location))

would create a task such as {task-22 (find volume control)}. When this task terminates, 
it should supply a return value which will be bound to the variable ?location. See the 



Apex Reference Manual (version 2.4.2)   -   Procedure Description Language (PDL)   27

description of the ‘terminate’ primitive (section 4.3.2) for a description of how re-
turn-values are generated.

It is an error for a task description to contain a variable whose value is undefined 
at the time the task is enabled. This is avoided by making task specificity a precondition 
using ‘waitfor’ clauses. Some ‘waitfor’ preconditions bind values directly. For ex-
ample, (waitfor (on ?object table)) not only waits for something to be on the 
table but also binds the variable ?object as a side effect. Other preconditions wait for 
the completion of tasks that insure a variable gets bound. For example, if step s2 waits 
for step s1 above to complete, this insures that the variable ?location will be bound 
when a procedure for s2 is selected.

4.2.4 waitfor

Type: step-level clause

Syntax: (waitfor {<pattern>|<step-tag-variable>}+ [:and <test>+])

A waitfor clause defines a set of task preconditions that must be satisfied for the task 
to become enabled – i.e. eligible for execution. Each pattern argument defines a single 
precondition that is unsatisfied when the task is created. The precondition is considered 
satisfied when a cogevent matching the pattern is detected. Cogevents are representa-
tions of events that have become available to the Action Selection Architecture. Some 
cogevents are generated by the Action Selection Architecture and reflect occurrences 
within it (e.g. an event signaling that some task has terminated). Others cogevents are 
generated externally, typically by agent perceptual resources such as vision (e.g. to sig-
nal that an object has been detected).

It is important to note that waitfor preconditions are satisfied by events, not by 
states represented in memory. For example, if a task comes into existence with a pre-
condition of the form (on book table) and a proposition of the same form exists in 
memory7, this will not satisfy the precondition; the task will remain in a pending (non-
enabled) state until matched to a corresponding cogevent. The Action Selection Archi-
tecture prescribes no particular method for detecting when preconditions are satisfied in 
the current state. One possibility is to include a step in the procedure to explicitly check 
whether a precondition is satisfied, either perceptually or by memory retrieval. Note: 
only allowing events to satisfy preconditions facilitated specification of reactive behav-
ior since it will sometimes be desirable to act only in response to change.

waitfor clauses are useful for specifying execution order for steps of a proce-
dure. This is accomplished by making the termination of one step a precondition for 
the enablement of another. The Action Selection Architecture generates events of the 
form (terminated <task>) when a task is terminated, so a clause such as (waitfor 
(terminated ?s3)) will impose order with respect to the task bound to the task-

7 The Apex architecture does not include a built-in memory for world-state.  Typically, this function is 
handled by a resource component defined to take encode and retrieve commands from the agent mech-
anisms.



Apex Reference Manual (version 2.4.2)   -   Procedure Description Language (PDL)   28

tag-variable ?s3 (see 4.2.3 for information on task-tag-variables). Termination precon-
ditions can be expressed using an abbreviated form: (waitfor <task-tag-var>)) == 
(waitfor (terminated <task-tag-var>)). Thus, the expression (waitfor ?s3) 
is equivalent to (waitfor (terminated ?s3)).

Preconditions in a waitfor clause are conjunctive; all must be satisfied for the 
task to become enabled. Optional tests (s-expressions) following the keyword :and add 
additional conjunctive preconditions. These (special) preconditions are evaluated after 
all of the normal preconditions (specified before the :and) are satisfied. If any of these 
expressions evaluate to nil, the special precondition is considered unsatisfied and the 
task does not become enabled. Moreover, it can never become enabled since the tests 
are not performed again. This restricts the use of special conditions to representing con-
ditional branches in a procedure. In the following example, the agent’s behavior de-
pends on the relative value of the variables ?my-score and ?his-score.

(step s1 (cackle with glee)
(waitfor (final-score ?my-score ?his-score :and
   (>= ?my-score ?his-score))))
(step s2 (sulk despondently)
(waitfor (final-score ?my-score ?his-score :and
   (< ?my-score ?his-score))))

It is possible to specify disjunctive preconditions using multiple waitfor clauses. For 
example, step s2 prescribes terminating a hole-digging task if either the hole has been 
dug to the specified depth or if the shovel needed to dig breaks.

(step s1 (dig hole ?depth))
(step s2 (terminate)
   (waitfor ?s1)
   (waitfor (broken shovel)))

Correctly specifying waitfor preconditions is perhaps the trickiest part of PDL. One 
important issue arises from the fact that, in Apex, preconditions are satisfied indepen-
dently, not jointly as might sometimes seem more intuitive. For example, one might 
want to express a behavior that becomes enabled in response to a red light, representing 
this with:

(waitfor (color ?object red) (luminance ?object high)).

However, vision might detect stopsign-1 that is red but not a light and generate a co-
gevent of the form (color stopsign-1 red). This will satisfy the first listed pre-
condition, binding the variable ?object to stopsign-1. The second precondition 
will then remain unsatisfied unless stopsign-1 becomes highly luminous. Planned 
improvements to PDL will provide the flexibility to express joint preconditions.



Apex Reference Manual (version 2.4.2)   -   Procedure Description Language (PDL)   29

4.2.5 select

Type: step-level clause

Syntax: (select <variable> <s-expression>)

The select clause is used to choose between alternative procedures for carrying out 
a task. Its influence on selection is indirect. The direct effect of a select clause is to 
bind the specified variable to the evaluation of the Lisp-expression argument. This oc-
curs as the task becomes enabled, just prior to selecting a procedure for the associated 
task, so instances of the variable in the task description will be replaced by the new val-
ue and may affect procedure selection.

(step s1 (press ?button with ?extremity)
(select ?extremity (if (> (height ?button) .5) ‘hand 
‘foot)))

In the example above, the value of the variable ?extremity is set to hand if the but-
ton is more than .5 meters off the ground, otherwise it is set to foot. Assuming pro-
cedures with index clauses (index (press ?button with hand)) and (index 
(press ?button with foot)), the effect of the selection clause is to decide 
between the procedures.

Known bug: a step may only contain one select clause.

4.2.6 period

Type: step-level clause

Syntax: (period :recurrent [<test>] [:enabled [<test>]] [:reftime {enabled|terminated}]
 [:recovery <interval>])

The period clause is used to create and control repetition. The simplest form of the 
clause, (period :recurrent) declares that the task should be restarted immediately 
after it terminates and repeat continuously. In this case, repetition will only cease when 
its parent task terminates or the task is explicitly terminated (by a terminate primitive 
action). The optional test condition is a Lisp expression that is evaluated; if nil, the task 
does not repeat. This makes the task behave as if in a repeat-until loop.

By default, any waitfor preconditions associated with a recurrent task are reset 
to their initial unsatisfied state when the task restarts. If present, the optional :enabled 
argument causes the task to restart in an enabled state – i.e. with preconditions satisfied. 
An optional test for enablement is evaluated at restart-time; if it evaluates to nil, the 
task is restarted with all preconditions unsatisfied as in the default case.

The optional :reftime argument is used to specify whether to start a new in-
stance of the task when the old instance terminates or when the old instance becomes 
enabled. Restarting at termination time is the default, producing repetition in the nor-
mal sense. If the value of reftime equals enabled, the task does not repeat; instead a 



Apex Reference Manual (version 2.4.2)   -   Procedure Description Language (PDL)   30

whole new instance of the task is created, coexisting with the current one. This option is 
provided as a way to specify response policies – i.e. that a response task should be gen-
erated to a given class of events even if one or more such response tasks are already on-
going.

(step s5 (shift-gaze ?visob)
   (waitfor (new (visual-object ?visob)))
   (period :recurrent :reftime enabled))

For example, the step above represents a policy of shifting gaze to any newly appearing 
object, even if it appears while in the process of shifting gaze to a previously appear-
ing object. If the task only recurred at terminate-time, objects appearing during a pre-
vious gaze-shift response would be ignored. To prevent infinite generation of new task 
instances, steps specified with enable-time recurrences cannot be restarted in enabled 
state. Thus, the enabled parameter must be nil (the default) and the step must include 
waitfor preconditions.

The :recovery argument temporarily reduces a repeating task’s priority (4.2.9) 
in proportion to the amount of time since the task was last executed. This reflects a re-
duction in the importance or urgency of re-executing the task. For example, after check-
ing a car’s fuel gauge, there is no reason to do so again soon afterwards since little 
is likely to have changed. In the following example, the priority of task for repeated-
ly monitoring the fuel gauge is reduced to 0 immediately after performing the task, and 
gradually rises to its full normal value over a period of 30 minutes.

(step s5 (monitor fuel-gauge) 
   (period :recurrent :recovery (30 minutes)))

4.2.7 forall

Type: step-level-clause

Syntax: (forall <var> in {<var>|<list>})

The forall clause is used to repeat an action for each item in a list. For example, the 
following step prescribes eating everything in the picnic basket.

(step s3  (eat ?food)
   (forall ?food in ?basket-contents)
   (waitfor ?s2 (contents picnic-basket ?basket-contents))

The effect of a forall clause is to cause a task to decompose into a set of subtasks, 
one for each item in the list parameter. Thus, if the step above generates {task-12 (eat 
?food)} and the cogevent (contents picnic-basket (sandwich cheese 
cookies)) occurs, the variable ?basket-contents will become bound to the list 
(sandwich cheese cookies). Later, when the task bound to ?s2 is terminated, 
task-12 becomes enabled. Normally, the Action Selection Architecture would then se-
lect a procedure for task-12. The forall clause takes effect just prior to procedure se-



Apex Reference Manual (version 2.4.2)   -   Procedure Description Language (PDL)   31

lection, creating a set of new tasks for each item in the forall list. Each of these is a 
subtask of the original. In this example, the forall clause would result in subtasks of 
task-12 such as {task-13 (eat sandwich)}, {task-14 (eat cheese)} and {task-15 
(eat cookies)}. Procedures would then be selected for each of the new tasks.

(step s1 (examine indicator ?indicator)
   (forall ?instrument in 
      (fuel-pressure air-pressure temperature))
   (period :recurrent))

Note that forall can be combined with period. In the example above, the step pre-
scribes repeatedly examining a set of instruments.

4.2.8 profile

Type: procedure-level clause

Syntax: (profile <resource>+)

The profile clause lists discrete resources required for using a procedure.8 Whenev-
er the procedure is selected for a task, the resource requirements become additional pre-
conditions (beyond those prescribed by waitfor clauses) for beginning execution of 
the task. For example, the following procedure declares that if selected as a method for 
carrying out a task, that task cannot begin execution until the Action Selection Architec-
ture allocates to it a resource named right-hand.

(procedure
   (index (shift manual-transmission to ?gear))
   (profile right-hand)
   (step s1 (grasp stick with right-hand))
   (step s2 (determine-target-gear-position ?gear => ?position))
   (step s3 (move right-hand to ?position) (waitfor ?s1 ?s2))
   (step s4 (terminate) (waitfor ?s3)))

The profile may specify resources as variables as long as these are specified in the 
index clause. For example, the procedure above could be specified as follows:

(procedure
   (index (shift manual-transmission to ?gear using ?hand))
   (profile ?hand)
   …)

8 The profile clause is only used for “blocking” resources such as hands and eyes that can 
only be allocated to one task at a time, but may be reallocated freely. There are currently no 
mechanisms to support reasoning about “depletable” resources such as fuel or money.



Apex Reference Manual (version 2.4.2)   -   Procedure Description Language (PDL)   32

Resource preconditions are not determined until a procedure is selected, and therefore 
not after all waitfor preconditions have been satisfied. Thus, the architecture only 
makes allocation decisions for tasks that are enabled or already ongoing. The architec-
ture allocates resources to tasks based on the following rules:

1. A task is competing for the resources listed in its profile if it is either 
enabled (all waitfor preconditions satisfied) or already ongoing 

2. If only one task competes for a resource, it is allocated to that task
3. If multiple tasks compete for a resource, allocation is awarded to the task 

with highest priority (see 4.2.9)
4. If one of the tasks competing for a resource is already ongoing (and thus 

has already been allocated the resource), its priority is increased by its 
interrupt-cost (4.2.10). By default, interrupt cost is slightly positive, 
producing a weak tendency to persist in rather than interrupt a task.

5. Tasks at any level in a task hierarchy may require and be allocated resource. 
A task does not compete with its own ancestor.

6. If a profile lists multiple resources, it is allocated all of them or none. If 
there is a resource for which it is not the highest priority competitor, 
then it does not compete for the other resources and any resources already 
allocated become deallocated. This rule takes precedence over rules 2 and 3.

Resources listed in a profile clause do not necessarily correspond to components of 
the agent resource architecture, the collection of modules that either provide informa-
tion to the Action Selection Architecture or can be commanded by it using the primitive 
action start-activity (4.3.1). Resources named in a profile clause that do not cor-
respond to an element of the resource architecture are virtual resources.

4.2.9 priority

Type: step-level clause

Syntax: (priority {<integer>|<variable>|<s-expression>})

A priority clause specifies how to assign a priority value to a task in order to deter-
mine the outcome of competition for resources. The assigned value is a unitless integer. 
It can be specified as a fixed value, as a variable that evaluates to an integer, or as an ar-
bitrary Lisp s-expression.

A task’s priority is first computed when it becomes enabled, is matched to a 
procedure that requires a resource (i.e. includes a profile clause), and is found to con-
flict with at least one other task requiring the same resource. If the task is not allocated 
a needed resource, then it remains in a pending state until one of several conditions aris-
es causing it to again compete for the resource. These conditions are: (1) the resource is 
deallocated from a task that currently owns it, possibly because that task terminated; (2) 
new competition for that resource is initiated for any task; (3) the primitive action re-
prioritize (4.3.5) is executed on the task. Whenever a task begins a new resource 
competition, its priority is recomputed.



Apex Reference Manual (version 2.4.2)   -   Procedure Description Language (PDL)   33

A step may have multiple priority clauses, in which case, the priority val-
ue from each clause is computed separately. The associated task is assigned whichev-
er value is the highest. This value is the local priority value. Tasks may also inherit pri-
ority from ancestor tasks. A task could have one or more inherited priorities but no local 
priority. Alternately, it may have no inherited priorities but a local priority. In all cases, 
task priority equals the maximum of all local and inherited values.

Note: In some cases, a task will become interrupted but one or more of its de-
scendant tasks will become or remain ongoing. These descendants no not inherit priori-
ty from the suspended ancestor.

4.2.10 interrupt-cost

Type: step-level clause

Syntax: (interrupt-cost {<integer>|<variable>|<s-expression>})

interrupt-cost specifies a degree of interrupt-inhibition for an ongoing task. in-
terrupt-cost is computed whenever the task is ongoing and competing for resourc-
es – i.e. resources it has already been allocated and is “defending.” The value is added 
to the task’s local priority.

4.2.11 assume

Type: procedure-level clause

Syntax: (assume <var> <proposition> <duration>)

An assume clause declares that a specified proposition should be treated as an assump-
tion. By default, the variable specified in the assume clause is set to T, indicating that 
the assumption has not been contradicted. If a cogevent contradiction occurs, then the 
value of the variable is set to nil. After an amount of time passes equal to the duration 
parameter, the value reverts to T.

The assume clause is meant to be used for procedure selection, allowing the ar-
chitecture to select alternative means for carrying out a task in non-standard conditions. 
For example, the following procedure selects route B (rather than route A as usual) for 
getting home from work if there is accident on highway-5.

(procedure
   (index (get home from work))
   (assume ?clear-path (accident-on-path route-a false) (1 day))
   (step s1 (enter and start car))
   (step s2 (drive route ?selected-route)
      (select ?selected-route 
         (if ?clear-path ‘route-a ‘route-b)))
      (waitfor ?s1))
   (step s3 (terminate) (waitfor ?s2)))



Apex Reference Manual (version 2.4.2)   -   Procedure Description Language (PDL)   34

One very unusual aspect of the assume clause is that it applies not to tasks, but to pro-
cedures. In other words, the presence of the procedure in the procedure set of an agent 
causes the agent to track the specified assumption. If an event contradicting the assump-
tion occurs, then this is reflected in the value of the assumed variable even if the proce-
dure has not been selected for any current tasks. If such a task comes into existence dur-
ing the interval between a detected violation of the assumption and the time when the 
assumption variable reverts to T, the assume variable will have the value nil for that 
task.

A cogevent is considered to violate the specified assumption if the assumption 
proposition ends in a Boolean value (T, nil, true, false) and the cogevent has the same 
form with the last value in the form holding the opposite value. For example, a co-
gevent of the form (accident-on-path route-a true) would violate the as-
sumption in the example above. Assumption violation also occurs if a cogevent occurs 
indicating a changed value in a fluent proposition. For example, the cogevent (color 
danger-indicator red) violates an assumption proposition of the form (color 
danger-indicator green) as long as color propositions have been declared fluents 
(4.2.12).

To track the truth value of declared assumptions, the architecture automatically 
generates a procedure with (index (monitor-assumptions)) and steps for mon-
itoring each assumption specified in an assumption clause. The example above would 
cause a step such as the following (simplified)

(step g813 (set-temporary-value ?selected-route nil (1 day))
 (waitfor (accident-on-path route-a true))
 (period :recurrent))

to be added to the monitor assumptions procedure. This procedure is automatically se-
lected and executed when the agent is initialized, so assumption monitoring is always 
active. Since the assumption variable is an Apex global variable, the value is not tied to 
the creation or termination of any task and is accessible to all tasks.

4.2.12 declare-fluent

Type: First-class construct

Syntax: (declare-fluent <pattern> <var-list>)

Fluents are propositions that can contradict other, similar propositions. If propositions 
are presented in a temporal sequence, they can make other propositions obsolete. For 
example, propositions 1 and 2 below are contradictory because, quantum mechanics 
aside, a device cannot be both on and off at the same time. If proposition 1 is presented, 
followed at some later time by 2, this can be interpreted as a change of state that makes 
1 obsolete. Propositions 3 and 4, in contrast are not in contradiction because an object 
can be inside multiple containers.



Apex Reference Manual (version 2.4.2)   -   Procedure Description Language (PDL)   35

(1) (power television-1 on)
(2) (power television-1 off)
(3) (in television-1 living-room-1)
(4) (in television-1 house-1)

The declare-fluent construct specifies that a given propositional form is a fluent. 
The pattern parameter is a list containing constants and variables. The variable-list pa-
rameter identifies pattern elements that determine whether the two propositions are po-
tentially in conflict. Actual conflict requires some difference in value in any remaining 
variable element. For example,

(declare-fluent (power ?device ?state) (?device))

propositions 1 and 2 above both match the fluent pattern. Because they have the same 
value for ?device, they are potentially in conflict. Because they have different values 
for the remaining variable specified in the fluent pattern (i.e. ?state), they are actually 
in conflict. The propositions below, in contrast, do not conflict with either 1 or 2.

(5) (power television-2 off)
(6) (weight television-1 100)

Fluent definition is used in conjunction with the assume clause (4.2.11) and can be 
used to define the information handling behavior of agent resources such as vision and 
memory.

4.2.13 rank

Type: step-level clause

Syntax: (rank {<integer>|<variable>|<s-expression>})

Like a priority clause, a rank clause specifies how to determine the outcome of 
competition for resources. The assigned value is a unitless integer. It can be specified as 
a fixed value, as a variable that evaluates to an integer or as an arbitrary Lisp s-expres-
sion. Rank values are computed whenever priority values are computed (4.2.9).

Though also used to resolve resource conflicts, rank is very different form pri-
ority. Whereas a task’s priority is an intrinsic (globally scoped) property, its rank de-
pends on what task it is being compared to. For example, consider the procedure below:

(procedure
   (index (record phone number of ?person))
   (step s1 (determine phone-number of ?person) (rank 1))
   (step s2 (write down phone-number of ?person) (rank 2))
   (step s3 (terminate) (waitfor ?s1 ?s2)))

This procedure specifies that activities related to determining a specified person’s phone 



Apex Reference Manual (version 2.4.2)   -   Procedure Description Language (PDL)   36

number can be carried out in parallel with activities for writing the number down – i.e. 
the latter task and all of its descendant subtasks (e.g. {task-25 (grasp pencil)}) do 
not have to wait for the former task to complete. However, resource conflicts will au-
tomatically be resolved in favor of the better-ranked task – i.e. the one with the lower 
priority value. Thus, if {task-25 (grasp pencil)} and {task-22 (grasp phone 
book)} both need the right hand, the latter task will be favored since it descends from a 
task with superior rank.

To determine rank for two conflicting tasks A and B, the architecture locates a 
pair of tasks A’ and B’ for A’ is an ancestor of A, B’ is an ancestor of B, and A’ and B’ 
are siblings – i.e. derived from the same procedure. If no rank is specified for A’ and B’, 
then A and B have no rank relative to one another. Resource conflict is then resolved 
based on priority (4.2.9). Otherwise, rank values for A’ and B’ are inherited and used 
to resolve the conflict.

4.3 PDL Primitives

Primitives are actions whose effects are defined by the Apex architecture rather than 
by a PDL procedure. They cannot be further decomposed into more fundamental tasks. 
The term operator is used for behaviors that are low-level from the point of view of a 
particular domain or task model. For example, in some models of human-computer in-
teraction, behaviors such as pushing a button and moving a mouse to a target location 
might be considered operators. Operators are generally represented as PDL procedures 
that employ primitives, particularly start-activity. The full set of Apex primitives 
are described in the sections below.

4.3.1 start-activity

Type: primitive

Syntax: (start-activity <resource> <activity-type> [:duration <time>] 
  [<parameter-value-pair>]*)

The start-activity primitive is used to initiate action in a module external to the 
Action Selection Architecture. Like all primitive tasks, a start-activity task takes 
zero time to execute and is terminated immediately9. However, an activity started by the 
primitive will typically go on for some non-zero time interval. To allow PDL to influ-
ence the activity during this interval and to respond when it completes, the start-ac-
tivity returns a pointer to a representation of the activity. For example, the start-
activity step in the following procedure signals a resource module (either left-hand 
or right-hand) to begin an activity of type pressing. A representation of the activity is 

9 The term “task” is reserved for actions and potential actions represented within the action selection ar-
chitecture. “Activities” are performed outside the architecture.



Apex Reference Manual (version 2.4.2)   -   Procedure Description Language (PDL)   37

returned when step s1 terminates and is bound to the variable ?a. The activity’s com-
pletion is later (1 second later) signaled by a cogevent of the form (completed <ac-
tivity>), which, in this case, results in the termination of the overall task.

(procedure
   (index (press button ?b with ?hand))
   (profile ?hand)
   (step s1 (start-activity ?hand pressing
      :target ?b :duration (1 second) => ?a))
   (step s2 (terminate) (waitfor (completed ?a))))

A start-activity task essentially sends a message to a resource10 module to begin doing 
something. A start-activity step must specify the resource that will receive the 
message followed by the type of activity to be initiated. Other parameters may then be 
specified including :duration and others specific to the activity type (e.g. pressing 
activities require a :target). If no duration parameter is specified in PDL, then the du-
ration is determined by the resource module and/or the activity type definition.

4.3.2 terminate

Type: primitive

Syntax: (terminate [<task>] [>> <return-value>])

A terminate step defines conditions for stopping execution of a specified task. By de-
fault, the target task is the one whose associated procedure contains the terminate 
step. Optionally, the step can specify some other task to be terminated. For example, the 
procedure below specifies that the agent should whistle while it works, but stop whis-
tling if it gets chapped lips. The gold mining task, parent of the tasks generated from 
steps of the procedure, terminates when the work is done.

(procedure
   (index (mine gold))
   (step s1 (whistle))
   (step s2 (work))
   (step s3 (terminate ?s1) (waitfor (chapped lips)))
   (step s4 (terminate) (waitfor ?s2)))

Terminating a task has a number of effects:
• The task’s state is set to terminated.

10 Only resources represented by a module external to the action selection architecture, and thus a com-
ponent of the agents resource architecture, can receive start-activity messages.  Resources named in 
profile clauses but not externally represented can still be the subject of allocation decisions. These are 
“virtual resources.”



Apex Reference Manual (version 2.4.2)   -   Procedure Description Language (PDL)   38

• The task is removed from the Action Selection Architecture’s agenda.
• The architecture stops monitoring waitfor preconditions associated with 

the task.
• A cogevent of the form (terminated <task>) is generated (4.2.4).
• Any resources allocated to the task are deallocated.
• All of its subtasks are themselves terminated (indirect termination).
• If it is a periodic task (4.2.6) that passes its recurrence test and was not 

indirectly terminated, the task is restarted.

4.3.3 reset

Type: primitive

Syntax: (reset <task>)

reset causes the target task to terminate and then restart with all preconditions satis-
fied. It is generally used for trying again after a failure. For example,

(procedure
   (index (start-engine))
   (step s1 (turn-key))
   (step s2 (reset) (waitfor (engine-sound sputtering)))
   (step s3 (terminate) (waitfor (engine-sound turned-over))))

4.3.4 cogevent

Type: primitive

Syntax: (cogevent <event>)

The cogevent primitive generates a cogevent of the specified form, potentially match-
ing task preconditions just as cogevents generated by resources (especially perceptual 
resources) or by the Action Selection Architecture. One important use of this primitive 
is to represent states that are inferred but not directly observed, such as hidden effects 
of an agent action. For example, step s4 generates an event representing the inference 
that an elevator has been summoned after pressing a button for this purpose.

(step s3 (press button elevator-down-button) ..)
(step s4 (cogevent (summoned elevator)) (waitfor ?s3))

The <event> parameter of a cogevent step can be any parenthesized expression not 
containing variables.



Apex Reference Manual (version 2.4.2)   -   Procedure Description Language (PDL)   39

4.3.5 reprioritize

Type: primitive

Syntax: (reprioritize [<task>])

reprioritize steps are used to specify conditions in which task priorities might have 
changed; justifying reevaluation of resource allocation decisions. A reprioritize action 
causes the architecture to recompute the specified task’s priority, then initiate a gener-
al competition for the resource(s) needed by the task. If the task is enabled but has not 
been allocated resources, this may result in an immediate interruption of the task cur-
rently using those resources. If the task is currently ongoing, reprioritization may cause 
it to be interrupted.

4.3.6 hold-resource

Type: primitive

Syntax: (hold-resource <resource-name> [:ancestor <integer>])

hold-resource adds a resource to the list of resources a task needs in order to exe-
cute and then causes the task to compete for the resource with other contenders. Where-
as the profile clause (4.2.8) establishes resource requirements as the task is enabled 
and its procedure selected, hold-resource adds requirements while the task is al-
ready ongoing. If the task competes successfully, there is no immediate effect. If some 
other task requiring the specified resource has higher priority, the task is interrupted.

The optional ancestor parameter specifies the target task. By default, the new 
requirement is added to the parent of the hold-resource task – i.e. the task whose as-
sociated procedure contains the hold-resource step. This corresponds to an ances-
tor value of 1 (1 level up the task hierarchy). Higher values target tasks higher in the 
hierarchy.

4.3.7 release-resource

Type: primitive

Syntax: (release-resource <resource-name> [:ancestor <integer>])

release-resource removes a resource from the list of resources a specified task requires 
in order to execute, and then causes the task to compete for its needed resources. It is typical-
ly invoked while the task is ongoing, freeing up the resource for use by some other task. The 
optional ancestor parameter specifies the target task. By default, the resource requirement 
is subtracted from the parent of the release-resource task – i.e. the task whose associat-
ed procedure contains the release-resource step. This corresponds to an ancestor val-
ue of 1 (1 level up the task hierarchy). Higher values target tasks higher in the hierarchy.



Apex Reference Manual (version 2.4.2)   -   Procedure Description Language (PDL)   40

4.4 PDL Variables

An understanding of how variable binding occurs and where the information comes 
from is crucial for specifying behavior in PDL. Variables in PDL become bound (and 
rebound) to values in several different circumstances as summarized below:

• Variables in an index clause are bound after the procedure selection.
• Variables in a profile clause are bound after the procedure selection.
• step tags are turned into variables and bound to tasks during task refinement.
• Variables in waitfor clauses are bound when matching cogevents occur.
• Variables in a selection clause are bound prior to the procedure selection.
• Variables in a return value form (following a =>) are bound at task termination.
• The map variable in a forall clause is bound during task refinement.
• Global variables are initially bound as the agent is initialized.

Apex maintains two kinds of variables: local and global. Local variables are defined 
with respect to a set of sibling tasks – i.e. immediate subtasks of a common parent. For 
example, the task {task-25 (get milk from refrigerator fridge-1 with 
right-hand)} might become enabled and the following procedure selected to carry it 
out:

(procedure
   (index (get ?item-type from refrigerator 
      ?refrigerator with ?hand))
   (profile ?hand)
   (step s1 (open door of ?refrigerator with ?speed)
      (select ?speed (if (> (hunger ?agent) 5)
         ‘quickly ‘slowly)))
   (step s2 (find ?item-type in ?refrigerator => ?location)
      (waitfor ?s1))
   (step s3 (grasp object at ?location with ?hand)
      (waitfor ?s2))
   (step s4 (remove hand ?hand from ?refrigerator)
      (waitfor (grasped ?item)))
   (step s5 (close door of ?refrigerator) (waitfor ?s4))
   (step s6 (terminate) (waitfor ?s5)))

In selecting the procedure, the variables ?item-type, ?refrigerator and ?hand 
become bound to the values milk, fridge-1 and right-hand respectively. Later, when 
task-25 is allocated the right-hand resource, new tasks will be created including:

{task-28 (open door of refrigerator-1 with ?speed)}
{task-32 (close door of refrigerator-1)}



Apex Reference Manual (version 2.4.2)   -   Procedure Description Language (PDL)   41

Together these local variable bindings generated by selecting a procedure for task-25 
form the local context for these tasks. The local context is stored with the parent task. 
Note that the printed form of these tasks has some variables replaced by values and 
some as variables. The writing convention is that values are shown instead of variables 
if bindings have been established. Just after task refinement, the variable ?refriger-
ator is bound but ?speed is not. This convention does not imply that these values are 
fixed for the lifetime of the task. Generally, if a binding changes, the task description 
will change to reflect this. Tasks are stored with variables unbound; replacement occurs 
as needed based on the current local context.

When the task refinement process creates new subtasks, new bindings are added 
to the local context. First, a new variable is created for each step tag in the selected pro-
cedure. For instance, the variable ?s5 is created and bound to task-32; the binding is 
then added to the local context stored with task-25. Second, the variable ?self is creat-
ed and bound to task-25, enabling subtasks of task-25 to refer to their parent.

Following task refinement, the state of each task is established. Tasks with wait-
for preconditions are initialized in the pending state and must await enabling co-
gevents. Tasks such as task-28 have no preconditions and thus start in an enabled state. 
Before the procedure-selection for this task is performed, its select clause is evaluat-
ed. In this case, the variable ?speed will either be assigned the value slowly or quickly 
depending on the hunger value of the agent. This new variable binding will then be add-
ed to the local context, making it available to specify task-28 and any of its siblings.

With the value of ?speed defined, task-28 becomes fully specified11. A procedure 
for it is selected, it is executed in the usual fashion and later terminates, enabling task-
29 for finding milk in fridge-1. The termination of task-29 has an important side effect. 
It returns a value which is bound to the variable ?location. The binding is added to 
the local context.

Bindings are frequently generated as cogevents match to preconditions expressed 
in a waitfor clause. In this case, it is assumed that a hand resource automatically gen-
erated an event of the form (grasped <object>) whenever it succeeds in a grasp ac-
tion. In this case, the hand generates (grasped milk-1) which causes the variable 
?item to become bound to milk-1. This binding is then added to the local context.

Global variables are initially defined when the agent is initialized. The only glob-
al variable of general importance is ?agent which is always bound to a representation 
of the intelligent agent as a whole (although see 4.2.11). To use this effectively requires 
knowledge of the kinds of state information stored in an agent structure and how to ac-
cess them (6.5). The example used above in which the hunger value of the agent is ac-
cessed is fanciful, though it is possible to extend the general agent model to include any 
kind of state data.

Information that results in variable bindings comes from several places. First, it 

11 All the variables in a task description must be specified prior to selecting a procedure – i.e. 
all must be assigned values either before the task becomes enabled, during enablement as 
a consequence of cogevent matches, or during the procedure selection process by a select 
clause. If procedure selection is attempted for a task that has not been fully specified, this 
produces an error.



Apex Reference Manual (version 2.4.2)   -   Procedure Description Language (PDL)   42

can come from processes internal to the Action Selection Architecture itself. For exam-
ple, the architecture creates the tasks that get bound to step variables and generates co-
gevents signaling, e.g. task termination, task interruption and resource allocation (Ap-
pendix A). Second, resources generate cogevents describing the internal state of those 
resources and, in the case of perceptual resources, external events and states. Finally, 
the Action Selection Architecture can in principle retrieve information from a memory 
component. The Action Selection Architecture does not include a memory element, al-
though see Freed (1998a) for an example.

4.5 Miscellaneous Features

4.5.1 Agent’s Initial Task

An agent’s initial task is specified with the :initial-task initarg, whose value is a 
procedure invocation and defaults to ‘(do-domain). For example,

(let ((jack (make-instance ‘human :name ‘jack
             …
   :initial-task ‘(play roshambo 3 times)))))

If :initial-task is not given when creating an agent instance, a PDL procedure 
whose index is (do-domain) must be defined.

4.5.2 PDL Partitions (Bundles)

A PDL procedure can be associated with some named category (called a partition or bundle) that 
can be referred to during agent creation. This allows different agents to have different skill sets. PDL 
procedures can be optionally assigned to a partition using the use-bundles form. Agents can be 
assigned a given bundle using the 
:use-bundles initarg. See the Roshambo simworld (<apex>/examples/roshambo.lisp) for ex-
amples.



Apex Reference Manual (version 2.4.2)   -   Apex Programming Guide   43

This chapter of the manual, still under development, is meant to contain detailed de-
scriptions of all functions that comprise the Apex Application Programming Interface 
(API), aside from PDL, which was documented in the previous chapter. The descrip-
tions given here currently appear in alphabetical order.

5.1 activity

In Apex, the main role of simulation is to allow events to play out over time. An activi-
ty is a representation of such a time-structured event. In the simplest case, an activity is 
a single, discrete, delayed response to some occurrence such as a message to a simob. A 
“message” is simply the invocation of one of the simob’s methods. But, an activity can 
also represent multiple and/or continuous responses. For example, the activity of falling 
(e.g. results from the removal of a supporting structure for a physical object) produc-
es responses such as changing the position and motion-vector of an object, as well as an 
eventual collision.

activity, which is a kind of simob, is the superclass (direct or indirect) of all 
application-defined activity classes. For example,

(defclass reading (activity); Reading is a subclass of activity.
   ((rate                   ; Number denoting reading speed.
     :initarg :rate
     :reader rate)))

The predefined methods for activity are listed below. These methods are defined by 
Apex for the activity class and have some default behavior. Application-defined ac-
tivity classes can override the default methods. Before listing the methods, two parame-
ters that many of them take are explained.

Some of these methods take as argument a simob. This simob should be the value 
of the primary-object slot of the activity. There is some redundancy in this specification, 
but it is an artifact of an earlier design and may soon be obsolete.

Some of these methods take an optional keyword argument :cause, which 

5.0 Apex Programming Guide



Apex Reference Manual (version 2.4.2)   -   Apex Programming Guide   44

should be followed by an instance of the Event class. In practice one does not create 
this object explicitly, but rather just pass on the :cause argument in the calling func-
tion. This argument specifies the Event that “caused” the ensuing method call to occur 
and hence supports causal tracing, which is currently being designed and experimented 
with. Since causal tracing is not yet an advertised feature in Apex, this argument may be 
omitted or ignored.

Here are the activity-related methods:

(start-activity simob activity-type &rest parameters)
This function instantiates and starts an activity of a given type for a given 
simob. The activity type is the name of an activity class, and simob will be-
come the primary object of the activity. What follows activity-type are 
parameters for the activity. They must be given as keyword argument/value 
pairs and must include at least one of either an :update-interval or a :
completion-time specification.

The predefined parameters are:

:update-interval
Specifies the time interval (as an integer) in between activity updates, 
i.e. calls to update-activity.

:completion-time
Specifies the time (as an integer) when an activity should be 
completed.

:duration
Specifies a duration (as integral time) for an activity.

:cause
Specifies the cause of an activity start. See the above paragraph 
about this argument.

(initialize-activity activity simob &key cause)
This optional method is called when an activity starts, and provides 
a means to specify actions that should happen at this time.

(update-activity activity simob &key cause)
This method can be defined for activity and simob types to specify peri-
odic updates to the simob resulting from the activity. For example, a rolling 
activity might update an object’s state parameter such as location.

(complete-activity activity simob &key cause)
This method is called when an activity completes.



Apex Reference Manual (version 2.4.2)   -   Apex Programming Guide   45

(stop-activity activity &key cause)
This method is used to terminate an activity without running its completion 
method, complete-activity.

(schedule-completion activity time)
This method is used to schedule completion of an activity in a given amount 
of time. Time may be given either as an integer or a time expression (see 
Appendix A for syntax).

5.2 Application Interface

The Lisp interface for manipulating applications is as follows:

(initapp) - initializes the application, which means executing the :init or :
init-sim clause of its defapplication form.

(startapp) - starts the application from its initial state, or resumes execution 
from a paused state. This means executing the :start clause of its 
defapplication form.

(stopapp) - stops a running application (as specified in the :stop clause of 
defapplication).

(stepapp) - Advances the application by one “cycle” (as specified in the :
step clause of defapplication)

(restartapp) - restarts the application from the beginning of its first run 
(applicable only to multi-run applications) (as specified in the :restart 
clause of defapplication)

(reloadapp) - reloads the current application if there is one.

These functions take no argument and return no value (they only perform side effects).
For simulations (native applications), all of these functions except initapp are 

predefined, and without initapp (specified as the :init-sim clause of defappli-
cation) the simulation will have no behavior.

For non-native applications, none of these functions are predefined, and without 
startapp (specified as the :start clause of defapplication), the application will 
have no behavior.

Apex provides defaults for any of these functions that are not predefined or user-
defined. The default behavior is to do nothing.



Apex Reference Manual (version 2.4.2)   -   Apex Programming Guide   46

5.3 asamain

The function asamain invokes one cogevent-processing cycle of the ASA. It’s argu-
ment is the agent whose ASA is being activated. asamain is called automatically in the 
following cases:

• when the keyword :trigger-asa is passed to the cogevent function
• in the assemble method of the human class
• at every cycle of the seeing activity of human.

For a non-native application, it may be necessary to call asamain explicitly, but it all 
depends on the nature of the application. For example, it may need to be invoked inside 
a control loop as done in the X-Plane® integration example. In general, it needs to be 
invoked whenever cogevents need to be processed, if :trigger-asa was not passed 
to the cogevent function.

5.4 defapplication

This form specifies the initial file set to load for the application, and code that defines 
the interface functions for the application (5.2). It has two formats. For native applica-
tions (simulations), it is:

(defapplication <name>
:libraries (<name1> .. <nameN>)
:files (<file1> .. <fileN>)
:init-sim <form>)

and for non-native applications:

(defapplication <name>
:libraries (<name1> .. <nameN>)
:files (<file1> .. <fileN>)
:init <form>
:reset <form>
:start <form>
:stop <form>
:step <form>
:restart <form>)

The first argument <name> is a string that names the application. The <name> argu-
ments for the :libraries are strings naming libraries. These libraries will be loaded 
in the order specified. See the Libraries specifications for details about libraries. Note: 
this is not necessarily all of the libraries used by the application, both libraries and files 
can load other libraries.

The <file> arguments of the :files clause are strings representing either relative 



Apex Reference Manual (version 2.4.2)   -   Apex Programming Guide   47

or absolute pathnames. If the file’s extension is omitted, a Lisp extension is assumed 
(.lisp, .lsp, or .cl). The files will be loaded in the order specified and constitute the “top 
level” files of the application. These files may load other files or libraries.

The <form> arguments of the other clauses are Lisp expressions that will be the 
bodies of the respective interface functions named in (5.2). When the function is called, 
the form is evaluated in the context of the current top-level Lisp environment (i.e. de-
fapplication does not create a lexical scope).

All clauses are optional and can appear in any order.

5.5 Event Logging

In contrast to an activity, which represents an ongoing process, an event is an instanta-
neous occurrence in the simulation. Many events, such as activity starts, updates, com-
pletions, and in fact just about any kind of function call, are implicit in the execution 
of a simulation. What is useful to the modeler, however, is the tracking of significant 
events, and the current means for doing so are the following set of programming con-
structs.

(setx (slot-name simob) value :key cause agent)

The setx form changes the value of a slot and is a substitute for Lisp’s setf. It works 
just like setf but also records the slot change as part of the simulation’s history and 
provides a mean to specify a cause for the slot change. For example,

(defvar *my-book* (make-instance ‘book :number-pages 430))
(setx (current-page *my-book*) 23)

(signal-event function-call &key agent)

The signal-event form is a wrapper around a function call and essentially makes 
an event of that function call. What is interesting is that, if the function call includes a 
:cause argument, the event created by signal-event is substituted for that cause 
as the new head of the causal chain12. For example, to make the turning of a page of a 
book a significant event, replace

(turn-page *my-book*)

with

(signal-event (turn-page *my-book*))

(log-event proposition &key cause agent)

The form log-event is used to record an event in a particular state, expressed as a proposi-
tion, which is represented with an arbitrary list. For example,



Apex Reference Manual (version 2.4.2)   -   Apex Programming Guide   48

(log-event (finished-reading *my-book*))

In the above forms, the keyword parameter :cause has type event and is used for spec-
ifying a causal factor12. The :agent keyword parameter has type agent and specifies 
the agent that is responsible for the state change.

5.6 Pausing Simulations

Scheduled pause: A pause may be scheduled for a specified simulation clock time. 
The time may be specified before the simulation is run, or during a pause, if the (new) 
scheduled pause time is greater than the current time. Pauses are scheduled by typing 
the following in the Listener:

(set-pause-time N)

where N is an integer specification of the time in simulation time units (milliseconds by 
default).

Cyclic pause: A simulation pause can be scheduled to occur once every N simulation 
events (events in the simulation engine’s internal activity queue). This is useful for cop-
ing with infinite loop bugs that can occur within a given simulation “moment,” mak-
ing it unhelpful to pause at a scheduled time that will never be reached. Such pauses are 
scheduled by typing the following into the Listener:

(set-pause-cycle N)

where N is an integer specifying the number of events.

After initialization: The simulation may be paused immediately after a simulation trial 
has been initialized using the form:

(pause-after-init <flag>)

where <flag> is either T (true) or nil (false). This is useful for determining whether a bug 
occurs before or after initialization is complete.

After each trial: The Apex simulation engine supports multi-trial simulation runs. The 
simulation may be paused at the completion of each trial using the form:

12 A rudimentary causal tracing system has been added to Apex but is not yet documented or fully usable.  
Therefore, there is not much value in using the :cause parameter.



Apex Reference Manual (version 2.4.2)   -   Apex Programming Guide   49

(pause-after-trial <flag>)

where <flag> is either T (true) or nil (false).

Pauses may be specified non-interactively (i.e. in code) by inserting the forms given 
above forms in your Lisp simworld code.

5.7 simob

Simob, or simulation object, is the superclass of all entities in an Apex simworld. Any 
classes defined by the user must inherit, directly or indirectly, from the simob class. 
For example,

(defclass book (simob)    ; Class BOOK is a subclass of SIMOB

  ((number-pages          ; slot for number of pages in the book
    :initarg :number-pages; name of keyword specifier for slot
    :reader number-pages) ; name of (read-only) slot accessor
   (current-page          ; slot for page being read (bookmark)
    :initform 1           ; initial value of slot
    :accessor current-page))); name of (read/write) slot accessor

In practice, user-defined objects will not inherit from simob directly, but from one of the subclasses 
of simob described in the section Physical Environment Modeling.

5.8 Specifying New Agent Resources

In an Apex human model, the general Action Selection Architecture does not interact 
with the world model directly. Instead, perceptual, cognitive, and motor resources com-
prising a resource architecture mediate interactions with the world and also constrain 
the agent to perform with human limits and other characteristics. Resources are imple-
mented as software modules and may be replaced or modified with moderate effort13. 
This section describes how to create a new resource, e.g. a prehensile tail. Users inter-
ested in creating or modifying resources should look at examples in apex/app/building-
blocks/human.

13 It not always necessary to define new resources to get some of the functionality one might want. If 
the only need for a resource is to affect the agent’s resource allocation, it is enough to simply name 
the resource in a profile clause (making it a virtual resource). The action selection architecture will do 
resource conflict detection and resolution without regard for whether that resource is associated with a 
class definition.



Apex Reference Manual (version 2.4.2)   -   Apex Programming Guide   50

Step 1: Define the new resource type.

Every resource is implemented as Lisp class with slots representing resource state attri-
butes. The following defines a class of resources called tail with a single state attri-
bute called grasp. The value of this slot is a representation of an object that the tail is 
currently grasping – or nil if no such object exists.

(defclass tail (human-resource physob)
   ((grasp :accessor grasp :initarg :grasp :initform nil)))

Tail inherits from the classes human-resource and physob (which itself inherits 
from visob – see Appendix B), which carry along a number of state attributes. Users 
are encouraged to study the definitions of these objects. New resource classes associat-
ed with a particular model can be stored in a simworld definitions file.

Step 2. Redefine the class standard-human to include the new resource.

Human models in Apex are instances of the class standard-human. As there is cur-
rently no support for human models based on other classes, standard-human and as-
sociated functions must be modified to make use of new resource types. This class is 
defined in <apex>/apexlib/human/human.lisp. The first required modification is to the 
class definition itself, adding a slot named for the new resource.

(tail :accessor tail :initarg :tail)

Next modify the assemble method defined in the same file to include a call to the func-
tion add-apex-resource.

(add-apex-resource (make-instance ‘tail) human-1)

In some cases, it is useful to create active resources – i.e. resources that engage in some 
periodic behavior rather than passively accepting commands from the Action Selection 
Architecture. Such behaviors can be initialized in the assemble method. For example, 
the following line will initiate a wiggle action every 1000 simulation time units (1 unit 
= 1ms by default). This assumes that the method wiggle has been defined and, when 
called, produces an appropriate effect.

(start-activity human-1 ‘wiggle :resource (tail human-1)
   :update-interval 1000)

Step 3: If appropriate, define activities the new resource can be commanded to carry out

Resources representing motor faculties (e.g. hands, tails) can be commanded to action 
by the PDL primitive action type start-activity. Each new kind of action (activi-
ty) is represented by a class (used to represent the state of the action at a given moment) 
and one or more methods defining the effect(s) of the activity. There are two kinds of 



Apex Reference Manual (version 2.4.2)   -   Apex Programming Guide   51

methods: complete-activity and update-activity. The former is used to de-
scribe what happens when the activity comes to completion. The latter describes what 
happens at intervals prior to completion. The following definitions support the activity 
tail-grasp.14

(defclass tail-grasp (resource-activity)
   ((target :accessor target :initarg :target :initform nil)))

(defmethod 
   complete-activity ((act tail-grasp) (tail-1 tail)&key cause)
   (signal-event 
      (grasped (target act) (setting act) :cause cause))

(defmethod grasped ((obj physob) (tail-1 tail) &key cause)
   (setx (grasp tail-1) obj :cause cause))

A step from such as the following can be used to invoke this behavior from PDL:

(step s1 (start-activity tail tail-grasp :target banana 
   :duration 2500))

Step 4: If appropriate, define event-generating processes invoked by the resource.

Some resources, particularly those modeling perception, generate input to the Action 
Selection Architecture called cogevents. This is accomplished using the function co-
gevent

(cogevent <eventform> <agent> [:trigger-asa <Boolean>])

where <eventform> is an arbitrary list representing what has occurred and <agent> is a 
pointer to the (human) agent that has detected the event. The optional trigger parame-
ter determines whether the event should be processed by the Action Selection Architec-
ture immediately or whether it should be stored in a buffer and processed the next time 
a processing cycle for the architecture occurs.15

14 Signal-event and setx are special forms used to track causal dependencies in a simulation. The former 
should be wrapped around a function or method call implementing a change of state to one or more 
simulated objects. setx should be used to effect the state change as it were setf.

15 There is no automatic architecture cycle; it must be triggered by a resource. In the default model, the 
vision resource triggers processing periodically.



Apex Reference Manual (version 2.4.2)   -   References   52

References
Freed, M. (2000) Reactive Prioritization. In Proceedings 2nd NASA International Work-
shop on Planning and Scheduling for Space.  San Francisco, CA. 

Freed, M.  (1998a)  Simulating Human Behavior in Complex, Dynamic Environments.  
Doctoral Dissertation.  Department of Computer Science, Northwestern University.

Freed, M. (1998b) Managing multiple tasks in complex, dynamic environments. In Proceed-
ings of the 1998 National Conference on Artificial Intelligence. Madison, Wisconsin.

Freed, M. and Remington, R.  (2000a)  GOMS, GOMS+ and PDL.  In Working Notes of 
the AAAI Fall Symposium on  Simulating Human Agents.  Falmouth, Massachusetts.

Freed, M. and Remington, R. (2000b) Making Human-Machine System Simulation a 
Practical Engineering Tool: An APEX Overview.  In Proceedings of the 2000 Interna-
tional Conference on Cognitive Modeling.  Groningen, Holland.

Freed, M. and Remington, R. (1998) A conceptual framework for predicting errors in 
complex human-machine environments. In Proceedings of the 1998 Meeting of The 
Cognitive Science Society. Madison, Wisconsin.  

Freed, M. and Remington, R. (1997) Managing decision resources in plan execution. In 
Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence. 
Nagoya, Japan. 

Freed, M. and Shafto, M. (1997) Human System Modeling: Some Principles and a 
Pragmatic Approach. In Proceedings of the 4th International Workshop on the Design, 
Specification, and Verification of Interactive Systems. Granada, Spain.

Freed, M., Shafto, M., and Remington, R. (1998) Using simulation to evaluate designs: 
The APEX approach. In Chatty, S. and Dewan, P., editors, Engineering for Human-
Computer Interaction, chapter 12. Kluwer Academic.

John, B. E., Vera, A. H., Matessa, M., Freed, M., and Remington, R. (2002) Automating 
CPM-GOMS. In Proceedings of CHIʼ02: Conference on Human Factors in Computing 
Systems. ACM, New York, pp. 147-154.



Apex Reference Manual (version 2.4.2)   -   Glossary   53

Glossary
ASA - Action Selection Architecture (ASA) is the algorithm Apex uses to gener-

ate behavior. Input to the algorithm consists of events that the agent might re-
spond to and a set of predefined PDL procedures. The architecture outputs 
commands to resources.

CPM - CPM refers to the automatic scheduling of low-level cognitive, perceptual, 
and motor (CPM) resources that underlie actions. Freed, Matessa, Remington, 
and Vera (2003).

Emacs - Emacs is a text editor and software development environment with support for 
Lisp programming.

GOMS - GOMS is a formal language for representing how human operators carry out 
specified routine tasks. It consists of four constructs: goals, operators, methods, 
and selection-rules (hence the GOMS acronym). Freed and Remington (2000a).

GOMS+ - A GOMS implementation called GOMS+ that incorporates several capabili-
ty extensions. As with GOMS, methods in GOMS+ are action sequences. Be-
haviors that are contingent or off critical-path (such as those needed to handle 
failure) cannot be represented. Freed and Remington (2000a).

PDL - Procedure Description Language (PDL) is a formal language used to specify 
the behavior of Apex agents. 

PERT - The US Navy developed the Program Evaluation and Review Technique 
(PERT) to plan and control a missile program. PERT charts have a probabilis-
tic approach that allows estimates for the duration of each activity.

RAP  - RAP is a plan and task representation based on program-like reactive action 
packages (RAP).



Apex Reference Manual (version 2.4.2)   -   Appendix A: Event Traces   54

Appendix A: Event Traces

A.1 Predefined Show-Levels

all : all events
none : no events
default : only task-started events
actions : resource related events
asa-low : Action Selection Architecture event, low detail
asa-medium : Action Selection Architecture event, medium detail
asa-high : Action Selection Architecture event, high detail
cogevents : cognitive events
simulation : activity related events

A.2 Lisp Commands for Controlling Trace Output

(show) : query the current TraceConstraint (syntax on next page)
(show :runtime) : see event trace as simulation runs (useful for debugging)
(show :hms) : see time displayed in hours/mins/secs
(show :level level)  : affects the given ShowLevel (see levels list)
(show EventType) : adds event type to trace (see event types list)
(show Constraint) : adds events matching given TraceConstraint to trace
(unshow) : turns off event trace
(unshow :runtime) : suppress runtime display of event trace 
(unshow :hms) : see time displayed as an integer
(unshow EventType) : removes event type from trace (see event types list)
(unshow Constraint) : removes events matching given TraceConstraint from trace
(generate-trace) : generate and print the trace
(trace-size) : query number of events in latest trace
(define-show-level name TraceConstraint) : defines show level (name is symbol)



Apex Reference Manual (version 2.4.2)   -   Appendix A: Event Traces   55

A.3 Trace Constraint Syntax

TraceConstraint: 
  TraceParameter  { see below }
| (and TraceConstraint*) { matches events meeting all given constraints }
| (or TraceConstraint*)  { matches events meeting any given constraint }
| (not TraceConstraint)  { matches events that fail the given constraint }

TraceParameter : 
  (event-type <symbol>) { matches events of given type }
| (object-id <symbol>)  { matches events containing given object }
| (time-range (<low> <high>)) { matches events occurring in given time range }

TimeExpression : (TimePair+) { one or more int/unit pairs }
TimePair : (<integer> TimeUnit)
TimeUnit : ms | msec | msecs
 | s | sec | secs | second | seconds
 | m | min | mins | minute | minutes
 | d | day | days

A.4 Event Types

Each event type is explicitly logged and can be filtered in/out for trace view. Verbose 
event descriptions name event parameters not including timestamp.

Causal event 0 is the initialize event. Terminology changes: enabled refers to satisfac-
tion of non-resource preconditions – any resource preconditions not yet satisfied; exe-
cuted tasks must take 0 time – i.e. primitive and special (Lisp callout) tasks; started is 
used for non-primitives. Resource deallocation events occur when a task is terminated 
or interrupted.

Need to review this list for meaningful and consistent naming, completeness/usefulness 
of causal information.



Apex Reference Manual (version 2.4.2)   -   Appendix A: Event Traces   56

Table A.4.1 Action Selection Architecture Events

Event type
Description 
(not including time)

Causal 
events

1 task-created <task> 0,17

2 monitor-created <monitor> <task> 0,17

3 monitor-satisfied <monitor> <cogevent> 2+any

4 {monitor-tentatively-satisfied} <monitor> <cogevent> 2+any

5 {monitor-expired} <monitor> 2+time

6 {monitor-desatisfied} <monitor> <cogevent> 2+any

7 enablement-testing-started <task> 3

8 enabled* <task> 1+7+3*

9 refused-enablement* <task> 1+7

10 procedure-selected <task> => <procedure> 8+10

11 conflict-detected <task> <task> <resource> 10,12

12 conflict-resolved* : winner <task> :loser <task> 11,13/13

13 priority-computed for <task> = <priority> 11,15

14 resource-allocated* <task> <resources> 11+12,16

15 interrupted* <task> <task> 8+12

16 resource-deallocated* <resource> :from <task> 15,20

17 task-started* <task> 8+14

18 executed* <task> 8+14

19 resumed* <task> 15+14

20 terminated* <task> 18,20

21 reset* <task> 18

22 reinstantiated* <task> 8,17,20

23 assumption-violated <varname> <agent> 3
 {} - ASA actions that are not yet supported
 * - an associated cogevent is generated



Apex Reference Manual (version 2.4.2)   -   Appendix A: Event Traces   57

Table A.4.2 Resource Architecture Events

Event type
Description 
(not including time)

Causal 
events

Control

1 started* <activity> <parameters>*

2 completed* <activity>

3 stopped* <activity>

4 clobbered <activity> :by <activity>

Vision

1 nothing-new* vision

2 pos* <visobfile> <coordinates>

3 Color* <visobfile> <colorname>

4 orientation* <visobfile> <degrees>

5 Shape* <visobfile> <shapelist|shape>

6 contrast* <visobfile> <value>

7 Blink* <visobfile> <rate>

8 elements* <visobfile> <list>

9 contains* <visobfile> <vof-list>

10 contained-by* <visobfile> <visobfile>

Gaze

1 fixated* <visobfile>

2 winnowed* <visobfile> <feature>

3 held-gaze* <locus> <time>

Memory

1 encoded* <proposition>

2 retrieved* <proposition>

3 new* <proposition>

4 revalued* <proposition>

5 refreshed* <proposition>

6 refined* <proposition>

Hands

1 grasped* <hand> <object>

2 released* <hand> <object>

3 moved* <hand> <object>

4 turned-dial* <hand> <dial> <position>

5 Typed* <hand> <keyboard> <msg>
 * - an associated cogevent is generated



Apex Reference Manual (version 2.4.2)   -   Appendix A: Event Traces   58

Table A.4.3 General Simulation Events

Event type
Description 
(not including time)

Causal 
events

1 started-activity <activity> <primary-simob> 

2 initialized-activity <activity> <primary-simob>
3 updated-activity <activity> <primary-simob>

4 stopped-activity <activity> <primary-simob>
5 completed-activity <activity> <primary-simob>



Apex Reference Manual (version 2.4.2)   -   Appendix B: Apex Library   59

Appendix B: Apex Library

Simob Activity

Infrastructure Layer

Intelligent Agent Layer

Agent Resource 
Activity

Visob

Physob

Speaking

Seeing

Fixating

Interface 
Object

Right 
Hand

Gaze 
Activity

Pulling 
Apart

Left
Hand

Holding 
Gaze

Setting Visual 
Interest

External 
Event

HumanHand

Voice

Vision

Memory

Gaze

Audition

Striking

Turning

Releasing

Moving

Encoding

Grasping

Retrieving

Audob

Human 
Resource

6/6/2003 apex - library.vthought

Classes comprising the provided 
library (found in apex/apexlib), are 
shown here, along with their super-
classes in the Apex system.



Apex Reference Manual (version 2.4.2)   -   Appendix C: Troubleshooting   60

Appendix C: Troubleshooting

C.1 Common Problems

This section contains possible solutions to some of the problems users have reported.

Problem: A task that should start never does. It seems to wait forever.

Explanations/Solutions:
1. There is a mismatch between the forms (patterns) of the event and waitfor 

precondition.
a. One of the patterns contains a spelling error
b. There is a difference in the order of pattern elements. e.g. a perceptual 

event of the form (between a b c) won’t match a precondition of the 
form (between a c b), even though both mean that a is observed to be 
between b and c.

c. There is a difference in the type of pattern elements.
e.g. (distance a b 2) vs. (distance a b 2.0)

d. The number of parameters in the events and precondition are different.
2. The event occurs before the task whose precondition it should match 

comes into existence.  This can happen when events and preconditions are both created 
at the same “instant” according to the simulation clock.

3. The event occurs after the task whose precondition it should match is (prema-
turely) terminated.

Problem: A task starts prematurely, before its waitfor preconditions should be satisfied.

Explanations/solutions:
1. A precondition is less constrained than it seems to be, allowing it to match 

events that it shouldn’t match.  e.g. a procedure consists of steps s1 (no pre-
conditions), s2 (waits for s1; binds ?x when it terminates) and s3 (waits for 
(color ?x red)).  The intention may be to determine an object of interest 
in step s2 and then wait for it to turn red, but here s3 will be enabled by ob-
serving ANY red object.

2. An event matching the precondition is being generated from an unexpected source
3. There are disjoint enablement conditions (multiple waitfor clauses), allowing 

the task to become enabled for execution in an unexpected way.



Apex Reference Manual (version 2.4.2)   -   Appendix C: Troubleshooting   61

C.2 Known Bugs

Note: bugs associated with specific Apex processes or PDL constructs are listed in the 
appropriate section.

Apex can crash if an agent acts in reference to a world object at time 0. The reason is 
that the behavior might be initiated before the world object is specified and incorporat-
ed into the physical environment model. Avoid this problem by insuring that the assem-
ble method is called on all physical environment objects before any agent objects are 
initialized.

The read macro #L that forces a Lisp evaluation at create time does not work in 
primitive (directly executable) procedure steps.

Activities can be started with negative duration values. This should produce an error.



Apex Reference Manual (version 2.4.2)   -   Appendix D: Pattern Matching   62

Appendix D: Pattern Matching
Pattern matching is used in a variety of PDL constructs including index, waitfor, 
and step. These examples illustrate the behavior and capabilities of the pattern-match-
ing algorithm. Source: Paradigms of AI Programming by Peter Norvig (1991).

(pat-match ‘(x = (?is ?n numberp)) ‘(x = 34))
;;;; -> ((?n . 34))

(pat-match ‘(x = (?is ?n numberp)) ‘(x = x))
;;;; -> NIL

(pat-match ‘(?x (?or < = >) ?y) ‘(3 < 4))
;;;; -> ((?Y . 4) (?X . 3))

(pat-match ‘(x = (?and (?is ?n numberp) (?is ?n oddp))) ‘(x = 3))
;;;; -> ((?N . 3))

(pat-match ‘(?x /= (?not ?x)) ‘(3 /= 4))
;;;; -> ((?X . 3))

(pat-match ‘(?x > ?y (?if (> ?x ?y))) ‘(4 > 3))
;;;; -> ((?Y . 3) (?X . 4))

(pat-match ‘(a (?* ?x) d) ‘(a b c d))
;;;; -> ((?X B C))

(pat-match ‘(a (?* ?x) (?* ?y) d) ‘(a b c d))
;;;; -> ((?Y B C) (?X))

(pat-match ‘(a (?* ?x) (?* ?y) ?x ?y) ‘(a b c d (b c) (d)))
;;;; -> ((?Y D) (?X B C))

(pat-match ‘(?x ?op ?y is ?z (?if (eql (?op ?x ?y) ?z))) ‘(3 + 4 is 7))
;;;; -> ((?Z . 7) (?Y . 4) (?OP . +) (?X . 3))

(pat-match ‘(?x ?op ?y (?if (?op ?x ?y))) ‘(3 > 4))
;;;; -> NIL

(pat-match-abbrev ‘?x* ‘(?* ?x))
;;;; -> (?* ?X)

(pat-match-abbrev ‘?y* ‘(?* ?y))
;;;; -> (?* ?Y)

(setf axyd (expand-pat-match-abbrev ‘(a ?x* ?y* d)))
;;;; -> (A (?* ?X) (?* ?Y) D)

(pat-match axyd ‘(a b c d))
;;;; -> ((?Y B C) (?X))

(pat-match ‘(((?* ?x) (?* ?y)) ?x ?y) ‘((a b c d) (a b) (c d)))
;;;; -> NIL



Apex Reference Manual (version 2.4.2)   -   Appendix E: Application Defi nition File   63

Appendix E: Application Definition File 
Example

The following is an example of a well-formed Application Definition File. It is included 
with the distribution of Apex along with others in the examples directory.

;;; Hello World
;;;
;;; This is a trivial simulation designed to exemplify some basicfeatures of Apex and 
;;; PDL programming. It consists of a telephone, which is initially silent, but rings
;;; after some time. Upon detecting the phone ring, the simulated humananswers it.
;;; 
;;; ---- Application header

;;; Every Apex application file (including libraries) must contain the header. The  
;;; value of :version is the global variable *apex-version*.

(apex-info :version “2.4”)

;;; ---- Application definition

;;; The top level file of an application (e.g. this file) is called the Application  
;;; Definition File and must containa defapplication form. It may be placed
;;; anywhere in the file.

(defapplication “Hello World” :init-sim (hello-world))

;;; ---- Libraries

;;; One can specify needed libraries in defapplication (using the:libraries 
;;; clause), but since we are including application code in the same file, we must 
;;; explicitly load any librariesneeded by the code...

(require-apex-library “human”)

;;; ---- Objects

;;; This scenario has just one object, a highly simplified telephone. A telephone is 
;;; a kind of physicalobject (physob).

(defclass telephone (physob)
  ((state
    :type symbol   ; possible values: silent, ringing, engaged
    :initform ‘silent
    :accessor state)
   (state-start-time :type number :initform 0 :accessor state-start-time)))

;;; ---- Activities 

;;; 1. “Being” a Phone

;;; We are modeling the telephone as a passive object that simply“waits” until 
;;; something happens to it, in our case being it starts ringing (without any 
;;; modeled cause). The activity of “being” models this passive state.



Apex Reference Manual (version 2.4.2)   -   Appendix E: Application Defi nition File   64

(defclass being (activity) ())

;;; The (simulation) activity of “being a telephone” never ends.It is updated 
;;; at regular intervals, at which time if the phone is silent it may randomly 
;;; start ringing. Once the phone starts ringing, it does so forever in 
;;; this simplified model.
;;; 
;;; NOTE the call to cogevent. It implies that the telephone istelepathically  
;;; informing the (sole) agentthat it is ringing!This is an unfortunate 
;;; ramification of the lack of a communications framework for Apex 
;;; agents. The Apex team is working on an elegant solution.

(defmethod update-activity ((act being) (tel telephone))
  (when (and (eq ‘silent (state tel)) (fifty-fifty-chance))
    (setx (state tel) ‘ringing)
    (cogevent `(ringing ,tel) *agent* :trigger-asa t)))

;;; Physical objects (physobs) require “assembly”. The assemble method is a 
;;; convenient means for combining many objects into one (not applicable in 
;;; this case) and starting initial activities.

(defmethod assemble ((tel telephone) &key component-of)
  (start-activity tel ‘being :update-interval 10))

(defun fifty-fifty-chance () ; Support function for update-activity.
  (= 0 (random 2)))

;;; 2. Answering the phone

;;; For simplicity we’ll model picking up the phone as a directactivity. It is 
;;; a kind of resource activity because it requires a resource (hand) of a 
;;; simulated human.

(defclass picking-up-phone (resource-activity)
  ((phone :initarg :phone :reader phone)))

;;; The activity of picking up the phone has no interesting behavior other 
;;; than to complete (after the duration specified in its start-activity). At 
;;; this time, the phone is “placed” into the hand, it’s state becomes 
;;; engaged, and an appropriate events (setx) are generated.

(defmethod complete-activity ((act picking-up-phone)(hand hand))
  (let ((phone (phone act)))
    (setx (grasped-object hand) phone)
    (setx (state phone) ‘engaged)))

;;; 3. Saying hello

;;; For this we’ll used the SPEAKING activity defined in the Human library. 
;;; We’ll just specialize its completion method to create a an appropriate 
;;; event.

(defmethod complete-activity :after 
                             ((act speaking) (v voice))
   (log-event `(said ,(utterance act)) :agent *agent*))

;;; Procedures



Apex Reference Manual (version 2.4.2)   -   Appendix E: Application Defi nition File   65

;;; The top level goal for this scenario is simply to answer the phone when it 
;;; starts ringing. Note the WAITFOR: it is what binds the variable ?phone to 
;;; phone object when its given proposition (a cogevent) is detected.

(procedure
 (index (handle-phone))
 (step s1 (answer-phone ?phone) (waitfor (ringing ?phone)))
 (step s2 (end-trial) (waitfor ?s1)))

;;; To answer the phone, you pick it up and say hello...

(procedure
   (index (answer-phone ?phone))
   (step pickup (pickup-phone ?phone))
   (step talk (say-hello) (waitfor ?pickup))
   (step stop (terminate) (waitfor ?talk)))

;;; The phone is answered by starting the picking-up-phone activity (the 
;;; chosen duration is arbitrary). This procedure completes when that activity 
;;; completes.

(procedure
   (index (pickup-phone ?phone))
   (profile right-hand)
   (step pickup (start-activity right-hand picking-up-phone :phone ?phone
                                :duration (1 sec) => ?act))
   (step terminate (terminate) (waitfor (completed ?act))))

;;; Speech is uttered by starting the speaking activity (the chosen duration 
;;; is arbitrary). This procedure completes when that activity completes.

(procedure
   (index (say-hello))
   (profile voice)
   (step talk (start-activity voice speaking :utterance “Hello?”
                              :duration (500 ms) => ?act))
   (step terminate (terminate) (waitfor (completed ?act))))

;;; ---- Initialization

;;; The essential elements of simulation initialization are creating objects 
;;; and starting at least one activity. In this case the assemble methods do 
;;; the latter (note that these initial “time 0”activities are started before 
;;; the simulation starts, technically speaking). Finally, a few useful event
;;;  types are enabled with SHOW.

(defun hello-world ()
  (let* ((room (make-instance ‘locale :name “Living Room”))
         (phone (make-instance ‘telephone :name “Jill’s Phone” :locale room))
         (jill (make-instance ‘human :name “Jill” :locale room
                         :initial-task ‘(handle-phone))))
    (assemble phone)
    (assemble jill)
    (show state)
    (show said)
    (show completed)))

;;; End of file



Apex Reference Manual (version 2.4.2)   -   Appendix F: Starting Apex within Allegro Common Lisp   66

Appendix F: Starting Apex within Allegro 
Common Lisp

If you have the Franz Allegro Common Lisp (ACL) development environment and wish 
to use it to run Apex instead of running Apex from its distribution, then please follow 
these steps.

1. Start Emacs (if you use Emacs).

2. Start ACL:
 Within Emacs (assuming you have the ACL Emacs interface), 
 enter “M-x fi:common-lisp” to start ACL.

 Without Emacs, start the ‘alisp’ executable of ACL. There are several others.

3. Load Apex: Enter load “... apex/load.lisp”, where “...” is your path.

4. Start the Sherpa server: Enter sherpa. Sherpa is started as a separate pro-
cess, so that the Apex listener can still be used.

5. Launch Sherpa:
 On a Windows or Macintosh system, double click on the Sherpa icon.
 On Linux or Solaris, type “java -jar sherpa.jar” in the directory that 

contains sherpa.jar (or whatever the Sherpa file is called).



Apex Reference Manual (version 2.4.2)   -   Index   67

A

Action Selection Architecture 
(ASA)  21

activity  43
ADF. See Application Definition 

File
agent

initial task  42
specifying new resources  49

applications  10. See also native ap-
plications; See also non-native 
applications

creating  12
loading  10
pausing  11
resetting  11
single-stepping  11
starting  11

Application Definition File  12
application interface  45
asamain  46
assume  33

C

cause  44
cogevent  38
Common Lisp. See Lisp
complete-activity  44
completion-time  44
conventions  4
CPM-GOMS  1
cyclic pause  48

D

declare-fluent  34
defapplication  46
duration  44

E

Emacs  5
buffer window  9

Index
event history  15
event logging  47
event traces  15
event types  16
Event View  7

F

forall  30
Freed, Michael  4

G

general programming language 
functions  22

general simulation events  58
GNU Emacs. See Emacs
GOMS  1

H

Hello World  63
help  18
hierarchical action selection  21
hold-resource  39
Human-Computer Interaction  1
Human Resource Architecture 

(HRA)  1

I

index  25
initapp  45
Inspect View  7
interrupt-cost  33

J

Java Runtime Environment (JRE)  5
John, Bonnie  52

L

libraries  13, 46
creating  13
finding  14
provided  14

Lisp  4



Apex Reference Manual (version 2.4.2)   -   Index   68

Lisp Listener. See Listener
Listener  9
local context  41
log-event  48

M

Matessa, Michael  52

N

native applications  10
non-native applications  10
Norvig, Peter  62

O

operator  36
output. See event traces; See PERT 

Charts

P

Paradigms of AI Programming  62
patches  18
pausing  11
pausing simulations  48

after each trial  48
after initialization  48
cyclic pause  48
scheduled pause  48

PDL Partitions (Bundles)  42
PDL Primitives  36
PDL Variables  40
period  29
PERT Charts  17

examining  17
exporting to PowerPoint  17
generating  17

PowerPoint  17
priority  32
procedure  23
Procedure Description Language 

(PDL)  19
profile  31

R

rank  35
reactive control  21
release-resource  39
reloadapp  45
Remington, Roger  52
reprioritize  39
reset  38
resetting  11
resource architecture  49

events  57
resource scheduling  22
restartapp  45

S

schedule-completion  45
scheduled pause  48
select  29
setx  47
Shafto, Michael  52
Sherpa  9

Event View  7
Inspect View  7
Slice View  7
Trace View  15

show level  16
signal-event  47
simob  49
simworlds. See native applications
single-stepping  11
Slice View  7
start-activity  36, 44
startapp  45
starting  11
Steele, Guy  4
step  26
stepapp  45
stop-activity  45
stopapp  45

T



Apex Reference Manual (version 2.4.2)   -   Index   69

Trace View  7, 15

U

update-activity  44
update-interval  44
user settings  15

V

Vera, Alonso  52
version  13
virtual resources  32
Visual Basic  17

W

waitfor  27
Whitehead, Alfred North  19
Worldbuilder  15

X

X-Plane  10


	Contents
	1.0	Introduction
	1.1	What is Apex?
	1.2	System Components
	1.3	Getting More Information
	1.4	Conventions

	2.0	Getting Started
	2.1.	Setting up
	2.2	Quick Tour

	3.0	Using Apex
	3.1	Interacting With Apex
	3.2	Introduction to Apex Applications
	3.3	Loading an Application
	3.4	Running an Application
	3.5	Creating a New Application
	3.5.1	Lisp Programming and Emacs
	3.5.2	Application Definition File
	3.5.3	Application Files
	3.5.4	Libraries
	3.5.4.1	Using Libraries
	3.5.4.2	Creating Libraries
	3.5.4.3	Finding Libraries
	3.5.4.4	Provided Libraries

	3.5.5	Worldbuilder

	3.6	User Settings and Other Files
	3.7	Apex Output
	3.7.1	Generating Event Traces
	3.7.2	Generating and Examining PERT Charts
	3.7.3	Exporting a PERT Chart to Microsoft PowerPoint

	3.8	System Patches
	3.9	Getting Help

	4.0	Procedure Description Language (PDL)
	4.1	Action Selection Architecture (ASA)
	4.2	PDL Syntax
	4.2.1	procedure
	4.2.2	index
	4.2.3	step
	4.2.4	waitfor
	4.2.5	select
	4.2.6	period
	4.2.7	forall
	4.2.8	profile
	4.2.9	priority
	4.2.10	interrupt-cost
	4.2.11	assume
	4.2.12	declare-fluent
	4.2.13	rank

	4.3	PDL Primitives
	4.3.1	start-activity
	4.3.2	terminate
	4.3.3	reset
	4.3.4	cogevent
	4.3.5	reprioritize
	4.3.6	hold-resource
	4.3.7	release-resource

	4.4	PDL Variables
	4.5	Miscellaneous Features
	4.5.1	Agent’s Initial Task
	4.5.2	PDL Partitions (Bundles)


	5.0	Apex Programming Guide
	5.1	activity
	5.2	Application Interface
	5.3	asamain
	5.4	defapplication
	5.5	Event Logging
	5.6	Pausing Simulations
	5.7	simob
	5.8	Specifying New Agent Resources

	References
	Glossary
	Appendix A: Event Traces
	A.1	Predefined Show-Levels
	A.2	Lisp Commands for Controlling Trace Output
	A.3	Trace Constraint Syntax
	A.4	Event Types

	Appendix B: Apex Library
	Appendix C: Troubleshooting
	C.1	Common Problems
	C.2	Known Bugs

	Appendix D: Pattern Matching
	Appendix E: Application Definition File Example
	Appendix F: Starting Apex within Allegro Common Lisp

